GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmosphere, MDPI AG, Vol. 5, No. 2 ( 2014-05-28), p. 342-369
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2014
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2012
    In:  Journal of Geophysical Research: Atmospheres Vol. 117, No. D11 ( 2012-06-16)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 117, No. D11 ( 2012-06-16)
    Abstract: Inversion of CO2 is conducted using passenger aircraft based measurements Aircraft data greatly reduces flux uncertainties especially in the tropics Inversion is evaluated by independent aircraft measurements
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biophysical Journal, Elsevier BV, Vol. 120, No. 3 ( 2021-02), p. 108a-
    Type of Medium: Online Resource
    ISSN: 0006-3495
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1477214-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The EMBO Journal, EMBO, Vol. 35, No. 12 ( 2016-06-15), p. 1254-1275
    Type of Medium: Online Resource
    ISSN: 0261-4189 , 1460-2075
    RVK:
    Language: English
    Publisher: EMBO
    Publication Date: 2016
    detail.hit.zdb_id: 1467419-1
    detail.hit.zdb_id: 586044-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 20 ( 2021-10-15), p. 15375-15407
    Abstract: Abstract. We report on measurements of total bromine (Brtot) in the upper troposphere and lower stratosphere taken during 15 flights with the German High Altitude and LOng range research aircraft (HALO). The research campaign WISE (Wave-driven ISentropic Exchange) included regions over the North Atlantic, Norwegian Sea, and northwestern Europe in fall 2017. Brtot is calculated from measured total organic bromine (Brorg) added to inorganic bromine (Bryinorg), evaluated from measured BrO and photochemical modeling. Combining these data, the weighted mean [Brtot] is 19.2±1.2 ppt in the northern hemispheric lower stratosphere (LS), in agreement with expectations for Brtot in the middle stratosphere (Engel and Rigby et al., 2018). The data reflect the expected variability in Brtot in the LS due to variable influx of shorter lived brominated source and product gases from different regions of entry. A closer look into Brorg and Bryinorg, as well as simultaneously measured transport tracers (CO and N2O) and an air mass lag time tracer (SF6), suggests that bromine-rich air masses persistently protruded into the lowermost stratosphere (LMS) in boreal summer, creating a high bromine region (HBrR). A subsection, HBrR∗, has a weighted average of [Brtot] = 20.9±0.8 ppt. The most probable source region is air recently transported from the tropical upper troposphere and tropopause layer (UT/TTL) with a weighted mean of [Brtot] = 21.6±0.7 ppt. CLaMS Lagrangian transport modeling shows that the HBrR air mass consists of 51.2 % from the tropical troposphere, 27.1 % from the stratospheric background, and 6.4 % from the midlatitude troposphere (as well as contributions from other domains). The majority of the surface air reaching the HBrR is from the Asian monsoon and its adjacent tropical regions, which greatly influences trace gas transport into the LMS in boreal summer and fall. Tropical cyclones from Central America in addition to air associated with the Asian monsoon region contribute to the elevated Brtot observed in the UT/TTL. TOMCAT global 3-D model simulations of a concurrent increase of Brtot show an associated O3 change of -2.6±0.7 % in the LS and -3.1±0.7 % near the tropopause. Our study of varying Brtot in the LS also emphasizes the need for more extensive monitoring of stratospheric Brtot globally and seasonally to fully understand its impact on LMS O3 and its radiative forcing of climate, as well as in aged air in the middle stratosphere to elucidate the stratospheric trend in bromine.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 7 ( 2020-04-06), p. 4105-4132
    Abstract: Abstract. We present novel measurements of five short-lived brominated source gases (CH2Br2, CHBr3, CH2ClBr, CHCl2Br and CHClBr2). These rather short-lived gases are an important source of bromine to the stratosphere, where they can lead to depletion of ozone. The measurements have been obtained using an in situ gas chromatography and mass spectrometry (GC–MS) system on board the High Altitude and Long Range Research Aircraft (HALO). The instrument is extremely sensitive due to the use of chemical ionization, allowing detection limits in the lower parts per quadrillion (ppq, 10−15) range. Data from three campaigns using HALO are presented, where the upper troposphere and lower stratosphere (UTLS) of the northern hemispheric mid-to-high latitudes were sampled during winter and during late summer to early fall. We show that an observed decrease with altitude in the stratosphere is consistent with the relative lifetimes of the different compounds. Distributions of the five source gases and total organic bromine just below the tropopause show an increase in mixing ratio with latitude, in particular during polar winter. This increase in mixing ratio is explained by increasing lifetimes at higher latitudes during winter. As the mixing ratios at the extratropical tropopause are generally higher than those derived for the tropical tropopause, extratropical troposphere-to-stratosphere transport will result in elevated levels of organic bromine in comparison to air transported over the tropical tropopause. The observations are compared to model estimates using different emission scenarios. A scenario with emissions mainly confined to low latitudes cannot reproduce the observed latitudinal distributions and will tend to overestimate organic bromine input through the tropical tropopause from CH2Br2 and CHBr3. Consequently, the scenario also overestimates the amount of brominated organic gases in the stratosphere. The two scenarios with the highest overall emissions of CH2Br2 tend to overestimate mixing ratios at the tropical tropopause, but they are in much better agreement with extratropical tropopause mixing ratios. This shows that not only total emissions but also latitudinal distributions in the emissions are of importance. While an increase in tropopause mixing ratios with latitude is reproduced with all emission scenarios during winter, the simulated extratropical tropopause mixing ratios are on average lower than the observations during late summer to fall. We show that a good knowledge of the latitudinal distribution of tropopause mixing ratios and of the fractional contributions of tropical and extratropical air is needed to derive stratospheric inorganic bromine in the lowermost stratosphere from observations. In a sensitivity study we find maximum differences of a factor 2 in inorganic bromine in the lowermost stratosphere from source gas injection derived from observations and model outputs. The discrepancies depend on the emission scenarios and the assumed contributions from different source regions. Using better emission scenarios and reasonable assumptions on fractional contribution from the different source regions, the differences in inorganic bromine from source gas injection between model and observations is usually on the order of 1 ppt or less. We conclude that a good representation of the contributions of different source regions is required in models for a robust assessment of the role of short-lived halogen source gases on ozone depletion in the UTLS.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Biophysical Journal, Elsevier BV, Vol. 108, No. 2 ( 2015-01), p. 390a-
    Type of Medium: Online Resource
    ISSN: 0006-3495
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1477214-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 23 ( 2021-11-29), p. 17225-17241
    Abstract: Abstract. Stratospheric inorganic chlorine (Cly) is predominantly released from long-lived chlorinated source gases and, to a small extent, very short-lived chlorinated substances. Cly includes the reservoir species (HCl and ClONO2) and active chlorine species (i.e., ClOx). The active chlorine species drive catalytic cycles that deplete ozone in the polar winter stratosphere. This work presents calculations of inorganic chlorine (Cly) derived from chlorinated source gas measurements on board the High Altitude and Long Range Research Aircraft (HALO) during the Southern Hemisphere Transport, Dynamic and Chemistry (SouthTRAC) campaign in austral late winter and early spring 2019. Results are compared to Cly in the Northern Hemisphere derived from measurements of the POLSTRACC-GW-LCYCLE-SALSA (PGS) campaign in the Arctic winter of 2015/2016. A scaled correlation was used for PGS data, since not all source gases were measured. Using the SouthTRAC data, Cly from a scaled correlation was compared to directly determined Cly and agreed well. An air mass classification based on in situ N2O measurements allocates the measurements to the vortex, the vortex boundary region, and midlatitudes. Although the Antarctic vortex was weakened in 2019 compared to previous years, Cly reached 1687±19 ppt at 385 K; therefore, up to around 50 % of total chlorine was found in inorganic form inside the Antarctic vortex, whereas only 15 % of total chlorine was found in inorganic form in the southern midlatitudes. In contrast, only 40 % of total chlorine was found in inorganic form in the Arctic vortex during PGS, and roughly 20 % was found in inorganic form in the northern midlatitudes. Differences inside the two vortices reach as much as 540 ppt, with more Cly in the Antarctic vortex in 2019 than in the Arctic vortex in 2016 (at comparable distance to the local tropopause). To our knowledge, this is the first comparison of inorganic chlorine within the Antarctic and Arctic polar vortices. Based on the results of these two campaigns, the differences in Cly inside the two vortices are substantial and larger than the inter-annual variations previously reported for the Antarctic.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 6 ( 2021-06-23), p. 4669-4687
    Abstract: Abstract. Production and use of many synthetic halogenated trace gases are regulated internationally due to their contribution to stratospheric ozone depletion or climate change. In many applications they have been replaced by shorter-lived compounds, which have become measurable in the atmosphere as emissions increased. Non-target monitoring of trace gases rather than targeted measurements of well-known substances is needed to keep up with such changes in the atmospheric composition. We regularly deploy gas chromatography (GC) coupled to time-of-flight mass spectrometry (TOF-MS) for analysis of flask air samples and in situ measurements at the Taunus Observatory, a site in central Germany. TOF-MS acquires data over a continuous mass range that enables a retrospective analysis of the dataset, which can be considered a type of digital air archive. This archive can be used if new substances come into use and their mass spectrometric fingerprint is identified. However, quantifying new replacement halocarbons can be challenging, as mole fractions are generally low, requiring high measurement precision and low detection limits. In addition, calibration can be demanding, as calibration gases may not contain sufficiently high amounts of newly measured substances or the amounts in the calibration gas may have not been quantified. This paper presents an indirect data evaluation approach for TOF-MS data, where the calibration is linked to another compound which could be quantified in the calibration gas. We also present an approach to evaluate the quality of the indirect calibration method, select periods of stable instrument performance and determine well suited reference compounds. The method is applied to three short-lived synthetic halocarbons: HFO-1234yf, HFO-1234ze(E), and HCFO-1233zd(E). They represent replacements for longer-lived hydrofluorocarbons (HFCs) and exhibit increasing mole fractions in the atmosphere. The indirectly calibrated results are compared to directly calibrated measurements using data from TOF-MS canister sample analysis and TOF-MS in situ measurements, which are available for some periods of our dataset. The application of the indirect calibration method on several test cases can result in uncertainties of around 6 % to 11 %. For hydro(chloro-)fluoroolefines (denoted H(C)FOs), uncertainties up to 23 % are achieved. The indirectly calculated mole fractions of the investigated H(C)FOs at Taunus Observatory range between measured mole fractions at urban Dübendorf and Jungfraujoch stations in Switzerland.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 22 ( 2022-11-25), p. 15049-15070
    Abstract: Abstract. Bromine released from the decomposition of short-lived brominated source gases contributes as a sink of ozone in the lower stratosphere. The two major contributors are CH2Br2 and CHBr3. In this study, we investigate the global seasonal distribution of these two substances, based on four High Altitude and Long Range Research Aircraft (HALO) missions, the HIAPER Pole-to-Pole Observations (HIPPO) mission, and the Atmospheric Tomography (ATom) mission. Observations of CH2Br2 in the free and upper troposphere indicate a pronounced seasonality in both hemispheres, with slightly larger mixing ratios in the Northern Hemisphere (NH). Compared to CH2Br2, CHBr3 in these regions shows larger variability and less clear seasonality, presenting larger mixing ratios in winter and autumn in NH midlatitudes to high latitudes. The lowermost stratosphere of SH and NH shows a very similar distribution of CH2Br2 in hemispheric spring with differences well below 0.1 ppt, while the differences in hemispheric autumn are much larger with substantially smaller values in the SH than in the NH. This suggests that transport processes may be different in both hemispheric autumn seasons, which implies that the influx of tropospheric air (“flushing”) into the NH lowermost stratosphere is more efficient than in the SH. The observations of CHBr3 support the suggestion, with a steeper vertical gradient in the upper troposphere and lower stratosphere in SH autumn than in NH autumn. However, the SH database is insufficient to quantify this difference. We further compare the observations to model estimates of TOMCAT (Toulouse Off-line Model of Chemistry And Transport) and CAM-Chem (Community Atmosphere Model with Chemistry, version 4), both using the same emission inventory of Ordóñez et al. (2012). The pronounced tropospheric seasonality of CH2Br2 in the SH is not reproduced by the models, presumably due to erroneous seasonal emissions or atmospheric photochemical decomposition efficiencies. In contrast, model simulations of CHBr3 show a pronounced seasonality in both hemispheres, which is not confirmed by observations. The distributions of both species in the lowermost stratosphere of the Northern and Southern hemispheres are overall well captured by the models with the exception of southern hemispheric autumn, where both models present a bias that maximizes in the lowest 40 K above the tropopause, with considerably lower mixing ratios in the observations. Thus, both models reproduce equivalent flushing in both hemispheres, which is not confirmed by the limited available observations. Our study emphasizes the need for more extensive observations in the SH to fully understand the impact of CH2Br2 and CHBr3 on lowermost-stratospheric ozone loss and to help constrain emissions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...