GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 19 ( 2019-10)
    Abstract: Anoxic subsurface sediments contain communities of heterotrophic microorganisms that metabolize organic carbon at extraordinarily low rates. In order to assess the mechanisms by which subsurface microorganisms access detrital sedimentary organic matter, we measured kinetics of a range of extracellular peptidases in anoxic sediments of the White Oak River Estuary, NC. Nine distinct peptidase substrates were enzymatically hydrolyzed at all depths. Potential peptidase activities ( V max ) decreased with increasing sediment depth, although V max expressed on a per-cell basis was approximately the same at all depths. Half-saturation constants ( K m ) decreased with depth, indicating peptidases that functioned more efficiently at low substrate concentrations. Potential activities of extracellular peptidases acting on molecules that are enriched in degraded organic matter ( d -phenylalanine and l -ornithine) increased relative to enzymes that act on l -phenylalanine, further suggesting microbial community adaptation to access degraded organic matter. Nineteen classes of predicted, exported peptidases were identified in genomic data from the same site, of which genes for class C25 (gingipain-like) peptidases represented more than 40% at each depth. Methionine aminopeptidases, zinc carboxypeptidases, and class S24-like peptidases, which are involved in single-stranded-DNA repair, were also abundant. These results suggest a subsurface heterotrophic microbial community that primarily accesses low-quality detrital organic matter via a diverse suite of well-adapted extracellular enzymes. IMPORTANCE Burial of organic carbon in marine and estuarine sediments represents a long-term sink for atmospheric carbon dioxide. Globally, ∼40% of organic carbon burial occurs in anoxic estuaries and deltaic systems. However, the ultimate controls on the amount of organic matter that is buried in sediments, versus oxidized into CO 2 , are poorly constrained. In this study, we used a combination of enzyme assays and metagenomic analysis to identify how subsurface microbial communities catalyze the first step of proteinaceous organic carbon degradation. Our results show that microbial communities in deeper sediments are adapted to access molecules characteristic of degraded organic matter, suggesting that those heterotrophs are adapted to life in the subsurface.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2022
    In:  Biophysical Journal Vol. 121, No. 3 ( 2022-02), p. 296a-297a
    In: Biophysical Journal, Elsevier BV, Vol. 121, No. 3 ( 2022-02), p. 296a-297a
    Type of Medium: Online Resource
    ISSN: 0006-3495
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1477214-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Microbiology Vol. 12 ( 2021-9-17)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-9-17)
    Abstract: Heterotrophic microorganisms in marine sediments produce extracellular enzymes to hydrolyze organic macromolecules, so their products can be transported inside the cell and used for energy and growth. Therefore, extracellular enzymes may mediate the fate of organic carbon in sediments. The Baltic Sea Basin is a primarily depositional environment with high potential for organic matter preservation. The potential activities of multiple organic carbon-degrading enzymes were measured in samples obtained by the International Ocean Discovery Program Expedition 347 from the Little Belt Strait, Denmark, core M0059C. Potential maximum hydrolysis rates (V max ) were measured at depths down to 77.9mbsf for the following enzymes: alkaline phosphatase, β- d -xylosidase, β- d -cellobiohydrolase, N-acetyl-β- d -glucosaminidase, β-glucosidase, α-glucosidase, leucyl aminopeptidase, arginyl aminopeptidase, prolyl aminopeptidase, gingipain, and clostripain. Extracellular peptidase activities were detectable at depths shallower than 54.95mbsf, and alkaline phosphatase activity was detectable throughout the core, albeit against a relatively high activity in autoclaved sediments. β-glucosidase activities were detected above 30mbsf; however, activities of other glycosyl hydrolases (β-xylosidase, β-cellobiohydrolase, N-acetyl-β-glucosaminidase, and α-glucosidase) were generally indistinguishable from zero at all depths. These extracellular enzymes appear to be extremely stable: Among all enzymes, a median of 51.3% of enzyme activity was retained after autoclaving for an hour. We show that enzyme turnover times scale with the inverse of community metabolic rates, such that enzyme lifetimes in subsurface sediments, in which metabolic rates are very slow, are likely to be extraordinarily long. A back-of-the-envelope calculation suggests enzyme lifetimes are, at minimum, on the order of 230days, and may be substantially longer. These results lend empirical support to the hypothesis that a population of subsurface microbes persist by using extracellular enzymes to slowly metabolize old, highly degraded organic carbon.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Journal of Geophysical Research: Atmospheres Vol. 124, No. 23 ( 2019-12-16), p. 13055-13070
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 124, No. 23 ( 2019-12-16), p. 13055-13070
    Abstract: More than 80% of people living in urban areas are exposed to air quality levels that exceed the World Health Organization limits. Ambient air pollution made of high concentrations of fine particles is one of the greatest risks to health—causing more than three million premature deaths worldwide every year. Automobile emissions have been considered as the major source of particles in urban areas, followed by the contribution from other sources. Here we emphasize the importance of an additional, less well‐understood source of particles. These particles may not be directly related to human emissions of pollutants and be likely formed above the ground. Large concentrations of these freshly produced particles can be brought to the surface by daytime mixing. Understanding the processes that form these particles is important because they appear during the midday when contributions from traffic are less. This study reemphasizes the importance of local meteorology for determining the ambient air pollution levels in a surprising way. Breaking the boundary layer usually leads to the dilution of traffic‐related particles. However, here we show that breaking of the boundary layer can also bring particles formed aloft and subsequently can lead to surface concentrations comparable to those experienced during rush hour.
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2019
    In:  mSphere Vol. 4, No. 4 ( 2019-08-28)
    In: mSphere, American Society for Microbiology, Vol. 4, No. 4 ( 2019-08-28)
    Abstract: Widely used microbial taxonomies, such as the NCBI taxonomy, are based on a combination of sequence homology among conserved genes and historically accepted taxonomies, which were developed based on observable traits such as morphology and physiology. A recently proposed alternative taxonomy database, the Genome Taxonomy Database (GTDB), incorporates only sequence homology of conserved genes and attempts to partition taxonomic ranks such that each rank implies the same amount of evolutionary distance, regardless of its position on the phylogenetic tree. This provides the first opportunity to completely separate taxonomy from traits and therefore to quantify how taxonomic rank corresponds to traits across the microbial tree of life. We quantified the relative abundances of clusters of orthologous group functional categories (COG-FCs) as a proxy for traits within the lineages of 13,735 cultured and uncultured microbial lineages from a custom-curated genome database. On average, 41.4% of the variation in COG-FC relative abundance is explained by taxonomic rank, with domain, phylum, class, order, family, and genus explaining, on average, 3.2%, 14.6%, 4.1%, 9.2%, 4.8%, and 5.5% of the variance, respectively ( P  〈   0.001 for all). To our knowledge, this is the first work to quantify the variance in metabolic potential contributed by individual taxonomic ranks. A qualitative comparison between the COG-FC relative abundances and genus-level phylogenies, generated from published concatenated protein sequence alignments, further supports the idea that metabolic potential is taxonomically coherent at higher taxonomic ranks. The quantitative analyses presented here characterize the integral relationship between diversification of microbial lineages and the metabolisms which they host. IMPORTANCE Recently, there has been great progress in defining a complete taxonomy of bacteria and archaea, which has been enabled by improvements in DNA sequencing technology and new bioinformatic techniques. A new, algorithmically defined microbial tree of life describes those linkages, relying solely on genetic data, which raises the issue of how microbial traits relate to taxonomy. Here, we adopted cluster of orthologous group functional categories as a scheme to describe the genomic contents of microbes, a method that can be applied to any microbial lineage for which genomes are available. This simple approach allows quantitative comparisons between microbial genomes with different gene compositions from across the microbial tree of life. Our observations demonstrate statistically significant patterns in cluster of orthologous group functional categories at taxonomic levels that span the range from domain to genus.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2019
    In:  mSphere Vol. 4, No. 5 ( 2019-10-30)
    In: mSphere, American Society for Microbiology, Vol. 4, No. 5 ( 2019-10-30)
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: mSystems, American Society for Microbiology, Vol. 4, No. 5 ( 2019-10-29)
    Abstract: We applied theoretical and simulation-based approaches to characterize how microbial community structure influences the amount of sequencing effort to reconstruct metagenomes that are assembled from short-read sequences. First, a coupon collector equation was proposed as an analytical model for predicting sequencing effort as a function of microbial community structure. Characterization was performed by varying community structure properties such as richness, evenness, and genome size. Simulations demonstrated that while community richness and evenness influenced the sequencing effort required to sequence a community metagenome to exhaustion, the effort necessary to sequence an individual genome to a target fraction of exhaustion depended only on the relative abundance of the genome and its genome size. A second analysis evaluated the quantity, completion, and contamination of metagenome-assembled genomes (MAGs) as a function of sequencing effort on four preexisting sequence read data sets from different environments. These data sets were subsampled to various degrees of completeness to simulate the effect of sequencing effort on MAG retrieval. Modeling suggested that sequencing efforts beyond what is typical in published experiments (1 to 10 Gbp) would generate diminishing returns in terms of MAG binning. A software tool, Genome Relative Abundance to Sequencing Effort (GRASE), was created to assist investigators to further explore this relationship. Reevaluation of the relationship between sequencing effort and binning success in the context of genome relative abundance, as opposed to base pairs, provides a constraint on sequencing experiments based on the relative abundance of microbes in an environment rather than arbitrary levels of sequencing effort. IMPORTANCE Short-read sequencing with Illumina sequencing technology provides an accurate, high-throughput method for characterizing the metabolic potential of microbial communities. Short-read sequences can be assembled and binned into metagenome-assembled genomes, thus shedding light on the function of microbial ecosystems that are important for health, agriculture, and Earth system processes. The work presented here provides an analytical framework for selecting sequencing effort as a function of genome relative abundance. As such, experimental goals in metagenome-assembled genome creation projects can select sequencing effort based on the rarest target genome as a constrained threshold. We hope that the results presented here, as well as GRASE, will be valuable to researchers planning sequencing experiments. Author Video : An author video summary of this article is available.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...