GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 131, No. 13 ( 2018-03-29), p. 1464-1475
    Abstract: Genomic deletions of CDKN2A/2B are a new independent prognostic risk factor in adult Ph+ ALL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood Neoplasia, Elsevier BV, ( 2024-5), p. 100021-
    Type of Medium: Online Resource
    ISSN: 2950-3280
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Leukemia, Springer Science and Business Media LLC, Vol. 36, No. 1 ( 2022-01), p. 236-247
    Abstract: Preclinical research of myelodysplastic syndromes (MDSs) is hampered by a lack of feasible disease models. Previously, we have established a robust patient-derived xenograft (PDX) model for MDS. Here we demonstrate for the first time that this model is applicable as a preclinical platform to address pending clinical questions by interrogating the efficacy and safety of the thrombopoietin receptor agonist eltrombopag. Our preclinical study included n  = 49 xenografts generated from n  = 9 MDS patient samples. Substance efficacy was evidenced by FACS-based human platelet quantification and clonal bone marrow evolution was reconstructed by serial whole-exome sequencing of the PDX samples. In contrast to clinical trials in humans, this experimental setup allowed vehicle- and replicate-controlled analyses on a patient–individual level deciphering substance-specific effects from natural disease progression. We found that eltrombopag effectively stimulated thrombopoiesis in MDS PDX without adversely affecting the patients’ clonal composition. In conclusion, our MDS PDX model is a useful tool for testing new therapeutic concepts in MDS preceding clinical trials.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature, Springer Science and Business Media LLC, Vol. 621, No. 7977 ( 2023-09-07), p. E7-E26
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4300-4300
    Abstract: Introduction: Myelodysplastic Syndrome (MDS) can occur in young people but it is mainly a disease of the elderly with a dramatic increase of incidence in the decades above 60 years. Accordingly, the factor age may be an important gateway to the understanding of the molecular pathogenesis of MDS. Insights into the molecular changes of aging hematopoiesis in healthy organisms have found molecular changes, which often parallel the observations in MDS such as increase of clonality with age, change of epigenetic profiles, skewed lineage commitment toward the myeloid compartment and reduced regenerative capacity after stress. The development of MDS is often suggestive of an accelerated extrapolation of molecular changes, which also occur in normal aging hematopoiesis. Beyond this, increasing evidence is suggesting that MDS hematopoiesis is highly dependent on support of the bone marrow (BM) stroma, which has been shown to display aberrant transcriptomic profiles as compared to healthy BM stroma. To this end, we aimed to test the hypothesis whether the emergence of MDS may be associated with a continuity of molecular changes in BM stroma cells during aging. Therefore, we performed explorative RNA sequencing in a set of MSCs collected from healthy young, healthy old and patients with MDS with a highly standardized pre-analytical work-up algorithm. Methods: We collected BM samples from voluntary healthy young adults (age = 24 - 25 years, female n=3, male n=3), healthy old adults (age 66 - 79 years, female n=3, male n=3) and patients with very low - intermediate risk MDS (age 51 - 87 years, female n=3, male n=3). After isolation of BM mononuclear cells by Ficoll gradient centrifugation, 5x106 mononuclear BM cells were seeded into 25cm² flasks and cultured using StemMACS human MSC Expansion Media (Miltenyi Biotec) with weekly media exchange to select for MSCs. These were expanded and harvested in passage 2. Absence of residual hematopoietic cells was controlled by FACS with anti CD45, CD31, and CD146. Whole transcriptome RNA-sequencing on all samples was carried out from 150ng of high quality RNA using the TruSeq stranded total RNA protocol and 100bp paired end sequencing (Illumina). The bio-informatical pipeline consisted of mapping using hisat2 and cufflinks for calculation of differentially expressed genes. Results: RNA-sequencing generated a mean of 94 million reads per sample. Between the groups "healthy young" and "healthy old" 331 differentially regulated genes were identified. Between "healthy old" and "MDS" 514 genes were differentially regulated (fold change 〉 1.5, false discovery rate, FDR 〈 0.05). Among these, 197 genes were differently expressed between all three groups. With these parameters, a total of 17 genes showed a continuous and significant increase of expression from healthy young over healthy old toward MDS. Among these were Kit ligand (KITLG) but also a cluster of membrane based cell adhesion molecules such as Cadherin-6 (CDH6), Laminin Subunit Alpha 2 (LAMA2) and Laminin Subunit Gamma 2 (LAMC2) and others. Conversely, 5 genes showed a continuous and significant decrease of expression from healthy young over healthy old toward MDS, among these Leukocyte-specific protein 1 (LSP1), a gene implicated in regulation of T-cell migration. Gene set enrichment analysis revealed that MDS MSCs exhibited a significant depletion of genes involved in early adipogenic differentiation and enrichment of gene sets associated with extracellular matrix remodeling (FDR 〈 0.05, normalized enrichment score 〉 1.7). Although cells were cultured under normoxic conditions, MDS-MSCs displayed marked intrinsic feature of hypoxia. Conclusion: By integrating transcriptomic data from BM stroma cells from healthy individuals during aging and comparison to BM stroma cells from MDS patients we have identified gene sets that are significantly differentially expressed per continuitatem. On the background of the hypothesis that molecular changes in the microenvironment of MDS are an exacerbation of changes also taking place during normal aging in the bone marrow, these genes, which are accumulated in the context of extracellular matrix and cell adhesion are promising candidates to further elucidate a BM stroma based pathogenesis of MDS. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 942-942
    Abstract: Introduction: Thrombocytopenia is a common complication among MDS patients. Thus, many patients are dependent on platelet (PLT) transfusions, which give short-term therapeutic relief but are also associated with considerable clinical risks. In this context, thrombopoietin receptor agonists (TRAs) are under investigation as alternative treatment option, albeit with the concern that these substances may promote adverse events in MDS. However, beside potential positive effects on thrombopoiesis in MDS patients the TRA Eltrombopag (EPAG) has also been shown to exert positive disease modifying effects in vitro (Roth et al., Blood 2012). Using a MDS xenograft model, we here investigate the efficacy of EPAG and its influence on clonal composition on primary patient derived MDS xenografts and present data from an ongoing study. Methods: Currently, samples from n=18 MDS patients (MDS del(5q)=2, MDS-MLD=6, MDS-RS-MLD=1 MDS-EB-1=2, MDS-EB-2=7) have been xenografted into NSG mice by intrafemoral co-injection of CD34+ hematopoietic stem cells and mesenchymal stromal cells using a modified protocol according to Medyouf et al., Cell Stem Cell 2014. Long term engraftment is assessed 12 weeks post-transplant by intrafemoral bone marrow (BM) biopsy and mice with positive human engraftment are subsequently treated with either EPAG (50mg/kg) or vehicle control for 18 weeks. During that time, the mice are bled every two weeks and BM aspiration is performed every six weeks. Human hematopoietic cells are FACS sorted. In peripheral blood, human PLTs are specifically and absolutely counted with a FACS assay based on hCD41+ cells and beads. To track clonal composition of MDS samples upon xenografting and EPAG treatment in comparison to placebo control, the original patient sample and the final MDS xenograft sample are being whole exome sequenced (WES). Interspersed time points are analyzed with a patient individual amplicon based deep sequencing approach (Mossner et al., Blood 2016) to calculate dynamics of variant allele frequencies (VAF) in dependency of treatment. Results: To date, n=12 patient samples have been analyzed for human engraftment after 12 weeks post-transplant. Of these, n=7 (58%) have shown positive human engraftment and are being treated with EPAG versus placebo. To this end, one case has been completely followed up, including final molecular analysis. This MDS high risk case (MDS-EB-2) with a clinical PLT count of 29x109 PLT/L was transplanted into n=3 NSG mice. While two mice treated with EPAG survived the complete duration of the experiment, the placebo mouse died prematurely due to severe weight loss after 6 weeks of treatment. Further, EPAG treatment led to an initial rise of human PLT levels, while the placebo treated mouse presented a continuous decline of human PLTs, showing the efficacy of EPAG on human xenografts in the model. This observation has been confirmed in another case currently still under treatment. Molecular tracking by WES confirmed MDS patient specific molecular lesions in the MDS xenograft such as monosomy 7 and the disease related mutations CBL, DNMT3A and EZH2 with VAFs of 83%/43%/23% respectively. The monosomy 7 was detectable in all mice. CBL and DNMT3A exhibited similar VAFs in mouse EPAG1 (VAF=100%/54%), EPAG2 (VAF=100%/34%) and placebo (VAF=100%/50%). The EZH2 mutation was only detected in mouse EPAG2 (VAF=11%). Interestingly, the placebo mouse acquired a de novo mutation of U2AF1 (VAF=10%), which was not detectable in the initial patient sample or the EPAG treated mice. This spliceosomal mutation is associated with a higher risk of transformation to AML and shorter survival (Graubert et al., Nat Genet 2012; Makishima et al., Blood 2012). Conclusions: Our data show first proof of principle results that new treatment options can be tested successfully in a preclinical murine xenograft model of primary MDS patient samples in a placebo controlled experimental setting. This approach allows the performance of patient individual substance testing that can segregate substance specific effects from natural disease progression in the same patient. Clinical parameters such as human PLT production and molecular clonal composition can be measured with a high confidence in vivo. Our current data show preliminary support for the hypothesis that EPAG may be efficacious in increasing PLT production in MDS patients without adversely influencing the underlying clonal composition. Disclosures Nowak: Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 420-420
    Abstract: Abstract 420 Introduction: The characteristic hallmark of acute promyelocytic leukemia (APL) is a balanced reciprocal chromosomal translocation between chromosomes 15 and 17 leading to a fusion product consisting of the promyelocytic leukemia gene (PML) and the retinoic acid receptor alpha (RARA). The PML-RARA fusion product is necessary but not sufficient for the generation of leukemia and it is hypothesized that additional genomic lesions play a role in the pathogenesis of APL. Therefore, we have performed a high density SNP array analysis on 101 APL patient samples to identify new copy number alterations (CNAs) which may be relevant for the biology and prognosis of APL. Patients and Methods: Molecular and clinical outcome analyses were carried out retrospectively on patients diagnosed with APL, whose samples were referred to the molecular laboratory of the Department of Hematology and Oncology of the Medical Faculty Mannheim, University of Heidelberg, Germany between 1997 and 2010. 500 ng of genomic DNA from leukemic blasts per sample were processed according to the Genome Wide Human SNP 6.0 Array protocol (Affymetrix, Santa Clara, CA). The CNAG 3.3 software was used to perform allele-specific copy number analysis with anonymous references. CNAs of special interest were validated to be acquired in leukemia cells by performing allele-specific copy number analysis in matched pair SNP 6.0 array analysis, quantitative real time PCR and direct sequencing of genomic DNA from initial diagnosis and molecular remission samples. Results: We identified 279 acquired CNAs consisting of 185 heterozygous deletions, 87 amplifications and 7 regions of copy number neutral loss of heterozygosity (CNLOH). Besides common chromosomal aberrations such as trisomy 8 or duplications of the long arm of chromosome 8, deletions of 7q or isochromosome ider(17)(q10)t(15;17), numerous novel recurrent micro-deletions were discovered. The most common was a somatically acquired ∼100 kilobase deletion of chromosome 1q31.3 in 13 of 101 (13%) patients. These deletions encompassed the coding regions for the microRNAs mir181a1/b1. In univariate analyses of overall survival (OS) and relapse free survival (RFS) using Logrank tests, we found that patients carrying 2 or more CNAs as compared to 0 or 1 CNA as detected by SNP array had a significantly increased risk of death (p=0.016) and relapse (p=0.019). Patients carrying the recurrent deletion of chromosome 1q31.3 as compared to patients not carrying this deletion had a significantly increased risk of relapse (p=0.005), a markedly higher number of CNAs (median 8 vs. 2, p 〈 0.0001) and significantly higher white blood cell counts (WBC) at initial diagnosis (median 2550/μl vs. 16900/μl, p=0.009). We performed a multivariable analysis using Cox proportional hazards models to evaluate power of CNAs detected by SNP-array and deletions of chr. 1q31.3 as possible independent prognostic markers in APL as compared to age, WBC, platelet count (PC) and FLT3 mutational status. For the full model of OS only age and the number of CNAs detected by SNP-A met a 0.10 level of entry into the model and confirmed that the group of patients with 2 or more CNAs represent a subgroup with inferior outcome (“2 or more lesions”: hazard ratio = 5.942, p = 0.0015, age: hazard ratio = 1.08, p 〈 0.0001). Of note, for the analysis of RFS the presence of a chr. 1q31.3 deletion was the only effect, which met the entry level into the model of RFS and therefore was identified as a new strong predictor for an increased risk of relapse (“presence of del1q31.3”: hazard ratio = 28.9, p = 0.0031). Conclusion: The profiles of submicroscopic CNAs in APL patients are heterogeneic and may serve as strong independent prognostic markers for disease risk definition. Recurrent submicroscopic deletions of chr. 1q31.3 in leukemia cells of APL patients were associated with an increased number and characteristic pattern of further newly identified CNAs, unfavorable laboratory parameters and a higher risk of relapse. The number of CNAs was shown to be predictive for early death rate and overall survival. The further pursuit of these new potential molecular markers is highly warranted as they could refine the current risk stratification of APL by identifying new subgroups of patients, who could possibly gain from adapted treatment strategies. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1694-1694
    Abstract: Abstract 1694 Introduction: Myelodysplastic syndromes are a heterogeneous group of malignant clonal hematologic disorders characterized by ineffective hematopoiesis, peripheral cytopenias and dysplastic bone marrow cells, with frequent progression to acute myeloid leukemia. Because of its heterogeneous nature, modeling of this disease has proven to be very difficult in cell culture systems as well as mice. In addition, attempts to generate a xenotransplant model in immuno-compromised mice have only achieved very low levels of engraftment that are often transient, making it very difficult to study the biology of this disease in vivo. Recent studies in mice have shown that conditional impairment of the small RNA processing enzyme Dicer in mouse osteolineages induced a stromal niche that promoted myelodysplasia, leading to the hypothesis that abnormal bone marrow stromal cells might provide a “fertile soil“ for the expansion of the malignant clone. Patients and Methods: To the date of writing, a total of 12 primary hematopoietic stem cell- and mesenchymal stroma cell (MSCs) samples selected from patients with MDS have been isolated and xenotransplanted into NOD.Cg-Prkdscid Il2rgtm1Wjl/Szj (NSG) mice: MDS 5q- (n=7), MDS RCMD (n=3), MDS RAEB I (n=1), MDS-U (n=1). Engraftment was monitored by FACS using human specific antibodies to CD45, CD34 and CD38. In addition cell cycle behavior was analyzed by Ki67/Hoechst staining. Mesenchymal stromal cells were characterized using previously described stromal markers: CD105, CD271, CD73, CD166, CD90, CD146 and CD44. To isolate genomic DNA and RNA for molecular analyses, MDS xenografts were flow sorted based on human CD45 expression. Molecular characterization of primary MDS samples and xenotransplants was carried out by serial copy number analysis using Affymetrix SNP 6.0 Arrays, metaphase cytogenetics and direct sequencing of known mutations in the transplanted MDS samples. Results: We show, that the concomitant transplantation of MDS-derived mesenchymal stromal cells with the corresponding hematopoietic patient stem/progenitor cells leads to significant and long-term engraftment (0.1 – 15% for up to 23 weeks) of cells isolated from IPSS low and intermediate risk MDS patients. In addition to the bone marrow, MDS hematopoietic cells also infiltrate other hematopoietic compartments of the mouse including the spleen. Significant engraftment of cells with progenitor (CD34+CD38+) as well as stem cell phenotype (CD34+CD38-) was observed, which is consistent with engraftment of an MDS stem cell that sustains long-term hematopoiesis. SNP array analysis confirmed the clonal origin of the engrafted cells as MDS xenografts harboring the identical genomic lesions as present in the patient disease. Conclusion: We present a robust MDS xenograft model of low risk MDS entities based on the concomitant transplantation of primary MDS hematopoietic cells with MSCs from the same patients. This model does not only allow to study the biology of this disease in vivo but also the molecular and cellular interactions between MSCs and hematopoietic MDS cells. In addition it provides a useful platform to study the effects of new experimental therapeutic agents for the treatment of MDS in molecularly defined MDS cells. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Medical Genetics, BMJ, Vol. 50, No. 2 ( 2013-02), p. 108-117
    Type of Medium: Online Resource
    ISSN: 0022-2593 , 1468-6244
    RVK:
    Language: English
    Publisher: BMJ
    Publication Date: 2013
    detail.hit.zdb_id: 2009590-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: British Journal of Haematology, Wiley, Vol. 192, No. 5 ( 2021-03), p. 879-891
    Abstract: Ineffective erythropoiesis and iron overload are common in myelodysplastic syndromes (MDS). Erythroferrone (ERFE) and growth/differentiation factor 15 (GDF15) are two regulators of iron homeostasis produced by erythroid progenitors. Elevated systemic levels of ERFE and GDF15 in MDS are associated with dysregulated iron metabolism and iron overload, which is especially pronounced in MDS with SF3B1 gene mutations. However, the role of ERFE and GDF15 in MDS pathogenesis and their influence on disease progression are largely unknown. Here, we analyzed the expression of ERFE and GDF15 in CD71 + erythroid progenitors of n  = 111 MDS patients and assessed their effects on patient survival. The expression of ERFE and GDF15 in MDS was highly aberrant. Unexpectedly, ERFE expression in erythroprogenitors was highly relevant for MDS prognosis and independent of International Prognostic Scoring System (IPSS) stratification. Although ERFE expression was increased in patients with SF3B1 mutations, it predicted overall survival (OS) in both the SF3B1 wt and SF3B1 mut subgroups. Of note, ERFE overexpression predicted superior OS in the IPSS low/Int‐1 subgroup and in patients with normal karyotype. Similar observations were made for GDF15, albeit not reaching statistical significance. In summary, our results revealed a strong association between ERFE expression and MDS outcome, suggesting a possible involvement of ERFE in molecular MDS pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0007-1048 , 1365-2141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...