GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Research Ideas and Outcomes, Pensoft Publishers, Vol. 6 ( 2020-02-03)
    Abstract: Plants, fungi and algae are important components of global biodiversity and are fundamental to all ecosystems. They are the basis for human well-being, providing food, materials and medicines. Specimens of all three groups of organisms are accommodated in herbaria, where they are commonly referred to as botanical specimens. The large number of specimens in herbaria provides an ample, permanent and continuously improving knowledge base on these organisms and an indispensable source for the analysis of the distribution of species in space and time critical for current and future research relating to global biodiversity. In order to make full use of this resource, a research infrastructure has to be built that grants comprehensive and free access to the information in herbaria and botanical collections in general. This can be achieved through digitization of the botanical objects and associated data. The botanical research community can count on a long-standing tradition of collaboration among institutions and individuals. It agreed on data standards and standard services even before the advent of computerization and information networking, an example being the Index Herbariorum as a global registry of herbaria helping towards the unique identification of specimens cited in the literature. In the spirit of this collaborative history, 51 representatives from 30 institutions advocate to start the digitization of botanical collections with the overall wall-to-wall digitization of the flat objects stored in German herbaria. Germany has 70 herbaria holding almost 23 million specimens according to a national survey carried out in 2019. 87% of these specimens are not yet digitized. Experiences from other countries like France, the Netherlands, Finland, the US and Australia show that herbaria can be comprehensively and cost-efficiently digitized in a relatively short time due to established workflows and protocols for the high-throughput digitization of flat objects. Most of the herbaria are part of a university (34), fewer belong to municipal museums (10) or state museums (8), six herbaria belong to institutions also supported by federal funds such as Leibniz institutes, and four belong to non-governmental organizations. A common data infrastructure must therefore integrate different kinds of institutions. Making full use of the data gained by digitization requires the set-up of a digital infrastructure for storage, archiving, content indexing and networking as well as standardized access for the scientific use of digital objects. A standards-based portfolio of technical components has already been developed and successfully tested by the Biodiversity Informatics Community over the last two decades, comprising among others access protocols, collection databases, portals, tools for semantic enrichment and annotation, international networking, storage and archiving in accordance with international standards. This was achieved through the funding by national and international programs and initiatives, which also paved the road for the German contribution to the Global Biodiversity Information Facility (GBIF). Herbaria constitute a large part of the German botanical collections that also comprise living collections in botanical gardens and seed banks, DNA- and tissue samples, specimens preserved in fluids or on microscope slides and more. Once the herbaria are digitized, these resources can be integrated, adding to the value of the overall research infrastructure. The community has agreed on tasks that are shared between the herbaria, as the German GBIF model already successfully demonstrates. We have compiled nine scientific use cases of immediate societal relevance for an integrated infrastructure of botanical collections. They address accelerated biodiversity discovery and research, biomonitoring and conservation planning, biodiversity modelling, the generation of trait information, automated image recognition by artificial intelligence, automated pathogen detection, contextualization by interlinking objects, enabling provenance research, as well as education, outreach and citizen science. We propose to start this initiative now in order to valorize German botanical collections as a vital part of a worldwide biodiversity data pool.
    Type of Medium: Online Resource
    ISSN: 2367-7163
    Language: Unknown
    Publisher: Pensoft Publishers
    Publication Date: 2020
    detail.hit.zdb_id: 2833254-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science of The Total Environment, Elsevier BV, Vol. 875 ( 2023-06), p. 162361-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1487-1487
    Abstract: In acute leukemias, specific cytogenetic aberrations frequently correlate with myeloid or lymphoid phenotype of blasts and influence risk stratification. In chronic myeloid leukemia (CML) blast crisis (BC) it is not clear whether myeloid or lymphoid phenotype of blasts could be distinguished by specific chromosomal aberrations and have prognostic value. At diagnosis of CML, major route additional cytogenetic aberrations (ACA) like +8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11) and minor route ACA like -X, del(1)(q21), del(5)(q11q14), +10,-21, resulting in an unbalanced karyotype have been described to adversely affect outcome. Patients with minor route ACA (for example reciprocal translocations other than the t(9;22)(q34;q11) (e.g. t(1;21), t(2;16), t(3;12), t(4;6), t(5;8), t(15;20)) resulting in a balanced karyotype did not show differences in overall survival and progression free survival compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome. Aim of this study was to analyze the impact of the phenotype (myeloid or lymphoid) on time to BC and on cytogenetic pattern. Methods 73 out of 1524 evaluable patients (4.8%) randomized until March 2012 to the German CML-Study IV (a 5-arm trial to optimize imatinib therapy) progressed to BC. Cytogenetic data of 23 out of 32 patients with myeloid BC and 14 out of 21 patients with lymphoid BC were available. In 15 patients, cytogenetic analysis were missing whereas 2 and 3 patients had megakaryoblastic and mixed phenotype, respectively and were not considered in this analysis. Karyotypes of lymphoid and myeloid BC were divided in major route and minor route ACA and balanced and unbalanced karyotypes. Categorical covariates were compared with Fisher’s exact test, while continuous covariates were compared with the Mann-Whitney-Wilcoxon test. Survival probabilities after BC were compared using the log-rank test. Results Out of 23 patients with myeloid BC, 14 (61%) had major route unbalanced ACA (n=10) or minor route unbalanced ACA (n=4), 4 had minor route balanced ACA and 5 patients had the translocation t(9;22)(q34;q11) or a variant translocation t(v;22) without ACA.13 out of 14 (93%) patients with lymphoid BC had major route unbalanced (n=10) or minor route unbalanced ACA (n=3) and 1 had the standard translocation t(9;22)(q34;q11) only. Between myeloid and lymphoid BC, the difference in the distribution of unbalanced ACA was apparent, but not statistically significant (p=0.06). The most frequently observed major route ACA was trisomy 8 in both groups (7 vs. 6), +der (22)t(9;22)(q34;q11) was more frequently found in myeloid than lymphoid BC (6 vs. 2), +19 was found in both phenotypes (3 vs. 3) whereas an isochromosome i(17)(q10) and an isoderivative chromosome ider(22)t(9;22)(q34;q11) were less frequent and found only in myeloid BC (1 for each vs 0 for each aberration). In lymphoid BC, 5 of 14 patients (36%) had ACA which involved chromosome 7 (del(7)(q22) and -7) whereas in myeloid BC only 2 patients (9%) had -7 (p=0.08). The balanced karyotype with a translocation t(3;21)(q26;q22) and the translocation t(9;11)(p22;q23) described in acute myeloid leukemia was observed in 3 patients with myeloid CML (2 and 1, respectively) and in none with lymphoid phenotype. No differences were observed in time to BC for patients with lymphoid vs. myeloid BC (p=0.31, median time: 409 vs. 453 days) and survival after onset of BC (p=0.9, median time: 544 vs. 284 days). Conclusions The proportion of unbalanced karyotypes was higher in lymphoid than in myeloid BC. In lymphoid BC alterations of chromosome 7 were more often present whereas +der(22)t(9;22)(q34;q11) was observed more frequently in myeloid BC. The reciprocal translocations t(3;21)(q26;q22) and t(9;11)(p22;q23) described in acute myeloid leukemias were only observed in myeloid BC. However these cytogenetic differences do not seem to alter the course of BC. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hehlmann:Novartis: Research Funding; BMS: Consultancy, Research Funding. Hochhaus:Ariad: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding, Travel Other. Müller:Novartis: Honoraria, Research Funding, Speakers Bureau; BMS: Honoraria, Research Funding; Ariad: Honoraria. Saussele:Pfizer: Honoraria; BMS: Honoraria, Research Funding, Travel, Travel Other; Novartis: Honoraria, Research Funding, Travel Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Veterinary Immunology and Immunopathology, Elsevier BV, Vol. 157, No. 1-2 ( 2014-01), p. 65-77
    Type of Medium: Online Resource
    ISSN: 0165-2427
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 1498915-3
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 94, No. 12 ( 2015-12), p. 2015-2024
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 913-913
    Abstract: Abstract 913 Introduction: Acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the translocation t(9;22)(q34;q11) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations and mutations and thereby progression to accelerated phase (AP) and blast crisis (BC). At least 10% of patients in chronic phase (CP) CML show additional alterations at diagnosis. This proportion rises during the course of the disease up to 80% in BC. Acquisition of chromosomal changes during treatment is considered as a poor prognostic indicator, whereas the impact of chromosomal aberrations at diagnosis depends on their type. Patients with major route additional chromosomal alterations (major ACA: +8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11) have a worse outcome whereas patients with minor route ACA show no difference in overall survival (OS) and progression-free survival (PFS) compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome (Fabarius et al., Blood 2011). However, the impact of balanced vs. unbalanced (gains or losses of chromosomes or chromosomal material) karyotypes at diagnosis on prognosis of CML is not clear yet. Patients and methods: Clinical and cytogenetic data of 1346 evaluable out of 1544 patients with Philadelphia and BCR-ABL positive CP CML randomized until December 2011 to the German CML-Study IV, a randomized 5-arm trial to optimize imatinib therapy by combination, or dose escalation and stem cell transplantation were investigated. There were 540 females (40%) and 806 males (60%). Median age was 53 years (range, 16–88). The impact of additional cytogenetic aberrations in combination with an unbalanced or balanced karyotype at diagnosis on time to complete cytogenetic and major molecular remission (CCR, MMR), PFS and OS was investigated. Results: At diagnosis 1174/1346 patients (87%) had the standard t(9;22)(q34;q11) only and 75 patients (6%) had a variant t(v;22). In 64 of 75 patients with t(v;22), only one further chromosome was involved in the translocation; In 8 patients two, in 2 patients three, and in one patient four further chromosomes were involved. Ninety seven patients (7%) had additional cytogenetic aberrations. Of these, 44 patients (3%) lacked the Y chromosome (-Y) and 53 patients (4%) had major or minor ACA. Thirty six of the 53 patients (2.7%) had an unbalanced karyotype (including all patients with major route ACA and patients with other unbalanced alterations like -X, del(1)(q21), del(5)(q11q14), +10, t(15;17)(p10;p10), -21), and 17 (1.3%) a balanced karyotype with reciprocal translocations [e.g. t(1;21); t(2;16); t(3;12); t(4;6); t(5;8); t(15;20)]. After a median observation time of 5.6 years for patients with t(9;22), t(v;22), -Y, balanced and unbalanced karyotype with ACA median times to CCR were 1.05, 1.05, 1.03, 2.58 and 1.51 years, to MMR 1.31, 1.51, 1.65, 2.97 and 2.07 years. Time to CCR and MMR was longer in patients with balanced karyotypes (data statistically not significant). 5-year PFS was 89%, 78%, 87%, 94% and 69% and 5-year OS 91%, 87%, 89%, 100% and 73%, respectively. In CML patients with unbalanced karyotype PFS (p 〈 0.001) and OS (p 〈 0.001) were shorter than in patients with standard translocation (or balanced karyotype; p 〈 0.04 and p 〈 0.07, respectively). Conclusion: We conclude that the prognostic impact of additional cytogenetic alterations at diagnosis of CML is heterogeneous and consideration of their types may be important. Not only patients with major route ACA at diagnosis of CML but also patients with unbalanced karyotypes identify a group of patients with shorter PFS and OS as compared to all other patients. Therefore, different therapeutic options such as intensive therapy with the most potent tyrosine kinase inhibitors or stem cell transplantation are required. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Equity Ownership. Hochhaus:Novartis, BMS, MSD, Ariad, Pfizer: Consultancy Other, Honoraria, Research Funding. Müller:Novartis, BMS: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3996-3996
    Abstract: Current evidence indicates that acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the balanced reciprocal translocation t(9;22)(q34;q11) or the variant translocation t(v;22) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations (ACA) and mutations and thereby progression to accelerated phase and blast crisis (BC). At least 10% of patients in chronic phase (CP) CML show ACA already at diagnosis and more than 80% of patients acquire ACA during the transformation process into BC. Therefore, alterations at diagnosis as well as acquisition of chromosomal changes during treatment are considered as a poor prognostic factor. Differences in progression-free survival (PFS) and overall survival (OS) have been detected depending on the type of ACA. Patients with major route ACA (+8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11)) and with other alterations like -X, del(1)(q21), del(5)(q11q14), +10, -21 at diagnosis resulting in an unbalanced karyotype have a worse outcome. Patients with minor route ACA (for example reciprocal translocations other than the t(9;22)(q34;q11) (e.g. t(1;21), t(2;16), t(3;12), t(4;6), t(5;8), t(15;20)) resulting in a balanced karyotype show no differences in OS and PFS compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome (Fabarius et al., Blood 2011). Here we compare the type of chromosomal changes (i.e. balanced vs. unbalanced karyotypes) during the course of the disease from CP to BC aiming to provide a valid parameter for future risk stratification. Patients and Methods Clinical and cytogenetic data available from 1,346 out of 1,524 patients at diagnosis (40% females vs. 60% males; median age 53 years (range, 16-88)) with Philadelphia and BCR-ABL positive CP CML included until March 2012 in the German CML-Study IV (a randomized 5-arm trial to optimize imatinib therapy) were investigated. ACA were comparatively analyzed in CP and in BC. Results At diagnosis 1,174/1,346 patients (87%) had the standard t(9;22)(q34;q11) only and 75 patients (6%) had a variant t(v;22). Ninety-seven patients (7%) had additional cytogenetic aberrations. Of these, 44 patients (3%) lacked the Y chromosome (-Y) and 53 patients (4%) had ACA. Regarding the patients with ACA thirty-six of the 53 patients (68%) had an unbalanced karyotype and 17/53 patients (32%) a balanced karyotype. During the course of the disease 73 patients (out of 1,524 patients) developed a BC during the observation time (5%). Cytogenetic data were available in 52 patients with BC (21 patients with BC had no cytogenetic analysis). Three patients had a normal male or female karyotype after stem cell transplantation. Nine patients showed the translocation t(9;22)(q34;q11) or a variant translocation t(v;22) (six and three patients, respectively) only and in 40 patients ACA could be observed in BC (40/49 (82%)). Out of these 40 patients with ACA, 90% showed an unbalanced karyotype whereas only 10% of patients had a balanced karyotype. No male patient in BC showed the loss of the Y chromosome pointing to a minor effect of this numerical alteration on disease progression. Conclusion We conclude that patients with CML and unbalanced karyotype at diagnosis are under higher risk to develop CML BC compared to patients with balanced karyotypes or compared to patients without ACA. In BC, 90% of CML patients showed unbalanced karyotypes (only 68% of CML patients at diagnosis have unbalanced karyotypes) supporting the hypothesis that the imbalance of chromosomal material is a hallmark of disease progression, representing the natural history of the disease from CP to BC and indicating therefore a strong prognostic impact. Consequently, different therapeutic options (such as intensive therapy or stem cell transplantation) should be considered for patients with unbalanced karyotypes in CP CML at diagnosis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hehlmann:BMS: Consultancy, Research Funding; Novartis: Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, travel Other; BMS: Consultancy, Honoraria, Research Funding; Pfizer : Consultancy, Honoraria; Ariad : Consultancy, Honoraria. Müller:Ariad: Honoraria; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau. Saussele:Pfizer: Honoraria; BMS: Honoraria, Research Funding, Travel, Travel Other; Novartis: Honoraria, Research Funding, Travel Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 118, No. 26 ( 2011-12-22), p. 6760-6768
    Abstract: The prognostic relevance of additional cytogenetic findings at diagnosis of chronic myeloid leukemia (CML) is unclear. The impact of additional cytogenetic findings at diagnosis on time to complete cytogenetic (CCR) and major molecular remission (MMR) and progression-free (PFS) and overall survival (OS) was analyzed using data from 1151 Philadelphia chromosome–positive (Ph+) CML patients randomized to the German CML Study IV. At diagnosis, 1003 of 1151 patients (87%) had standard t(9;22)(q34;q11) only, 69 patients (6.0%) had variant t(v;22), and 79 (6.9%) additional cytogenetic aberrations (ACAs). Of these, 38 patients (3.3%) lacked the Y chromosome (−Y) and 41 patients (3.6%) had ACAs except −Y; 16 of these (1.4%) were major route (second Philadelphia [Ph] chromosome, trisomy 8, isochromosome 17q, or trisomy 19) and 25 minor route (all other) ACAs. After a median observation time of 5.3 years for patients with t(9;22), t(v;22), −Y, minor- and major-route ACAs, the 5-year PFS was 90%, 81%, 88%, 96%, and 50%, and the 5-year OS was 92%, 87%, 91%, 96%, and 53%, respectively. In patients with major-route ACAs, the times to CCR and MMR were longer and PFS and OS were shorter (P 〈 .001) than in patients with standard t(9;22). We conclude that major-route ACAs at diagnosis are associated with a negative impact on survival and signify progression to the accelerated phase and blast crisis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  European Journal of Dental Education Vol. 23, No. 2 ( 2019-05), p. 101-109
    In: European Journal of Dental Education, Wiley, Vol. 23, No. 2 ( 2019-05), p. 101-109
    Abstract: There has been no structured integration of ethical issues into the dental curriculum and currently no data for certain ethics modules exists in Germany. The study aimed at evaluating the attitudes to ethical issues that affect students at the Dental School in Kiel during patient treatment. Material and methods In the summer of 2017, students were recruited from the 6th and 10th semesters. A qualitative study design with interviews was chosen. The dimensions included, for example, experience with ethical issues, definitions and expectations of teaching content and methods. A qualitative content analysis was performed. Results Twelve and eleven students from semesters (32% each) participated. No student was able to name an ethical question based on his own experience (private/study). The need to address ethical issues was justified solely by personal treatment experiences. Discussion The study revealed a lack of basic ethical knowledge resulting in a lack of ability to deal with ethical issues. Instead, participants described experiences of psychological pressure, feelings of helplessness. Conclusion The results suggest that ethical‐theoretical foundations should be taught before the beginning of patient treatment. A didactic combination with clinical facts and case vignettes is recommended.
    Type of Medium: Online Resource
    ISSN: 1396-5883 , 1600-0579
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2025534-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2004
    In:  Macromolecular Materials and Engineering Vol. 289, No. 3 ( 2004-03), p. 254-263
    In: Macromolecular Materials and Engineering, Wiley, Vol. 289, No. 3 ( 2004-03), p. 254-263
    Abstract: Summary: Coupling reactions between terminal functionalized polymer chains were chosen for the synthesis of star‐like polymers consisting of polystyrene and polystyrene‐ block ‐poly[styrene‐ co ‐(butyl acrylate)] arms. For the preparation of terminal functionalized polymer chains a side reaction of the 2,2,6,6‐tetramethylpiperidine‐ N ‐oxyl (TEMPO) mediated free radical polymerization of methacrylates could be used successfully to convert TEMPO terminated polymers into end functionalized polymers. The number of functionalized monomer units attached to the polymer chain is directly related to the TEMPO concentration during this reaction. Different polystyrenes and polystyrene‐ block ‐poly[styrene‐ co ‐(butyl acrylate)] block copolymers were functionalized with a variable number of epoxide and alcohol groups at the chain end. For the determination of the optimal reaction parameters for the coupling reactions between these polymer chains, epoxy functionalized polystyrenes were converted with hydroxy functionalized polystyrenes under basic and acidic conditions. By activation with sodium hydride or boron trifluoride star‐like polymers were synthesized under mild conditions. The transfer of the reaction conditions to coupling reactions between end functionalized polystyrene‐ block ‐poly[styrene‐ co ‐(butyl acrylate)] copolymers showed that star‐like polymers with more than 12 arms were formed using boron trifluoride as activating agent. image
    Type of Medium: Online Resource
    ISSN: 1438-7492 , 1439-2054
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2004
    detail.hit.zdb_id: 2004372-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...