GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Atmospheres Vol. 105, No. D13 ( 2000-07-16), p. 17243-17255
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D13 ( 2000-07-16), p. 17243-17255
    Abstract: Previous attempts to quantify the global source strength of CH 4 from natural wetlands have resulted in a range of 90–260 Tg(CH 4 ) yr −1 . This relatively uncertain estimate significantly limits our understanding of atmospheric methane. In this study we reduce this uncertainty by simulating preindustrial CH 4 with a three‐dimensional chemistry‐transport model. Methane mixing ratios and δ 13 C‐CH 4 , as deduced from ice cores, and estimates of other preindustrial sources and sinks, are used as constraints. This yields an average preindustrial natural wetland source strength of 163 Tg(CH 4 ) yr −1 , with an estimated ±2σ uncertainty range of 130–194 Tg(CH 4 ) yr −1 . The present natural wetland source may be ∼10% smaller, owing to drainage and cultivation of wetland area since 1800 A.D. The simulated pole‐to‐pole concentration difference is found to be rather insensitive to the assumed relative contributions of important preindustrial sources and sinks, and therefore imposes only a limited constraint on the estimate of natural wetland emissions. In contrast, δ 13 C‐CH 4 could provide robust constraints, but, unfortunately, at present reliable measurements are absent. Estimates of the historic development of anthropogenic CH 4 sources, in combination with our model calculations, can largely explain the increase of methane mixing ratios during the nineteenth century. Results for the twentieth century indicate that these historical emission inventories underestimate anthropogenic emissions by at least 10%. Simulations of preindustrial and present‐day isotopic ratios show that the growth of anthropogenic sources since 1800 A.D. may have increased δ 13 C‐CH 4 by 3‰.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Atmospheres Vol. 104, No. D21 ( 1999-11-20), p. 26137-26160
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 104, No. D21 ( 1999-11-20), p. 26137-26160
    Abstract: An inverse modeling method is presented to evaluate the sources and sinks of atmospheric methane. An adjoint version of a global transport model has been used to estimate these fluxes at a relatively high spatial and temporal resolution. Measurements from 34 monitoring stations and 11 locations along two ship cruises by the National Oceanographic and Atmospheric Administration have been used as input. Recent estimates of methane sources, including a number of minor ones, have been used as a priori constraints. For the target period 1993–1995 our inversion reduces the a priori assumed global methane emissions of 528 to 505 Tg(CH 4 ) yr −1 a posteriori. Further, the relative contribution of the Northern Hemispheric sources decreases from 77% a priori to 67% a posteriori. In addition to making the emission estimate more consistent with the measurements, the inversion helps to reduce the uncertainties in the sources. Uncertainty reductions vary from 75% on the global scale to ∼1% on the grid‐scale (8° × 10°), indicating that the grid scale variability is not resolved by the measurements. Large scale features such as the interhemispheric methane concentration gradient are relatively well resolved and therefore impose strong constraints on the estimated fluxes. The capability of the model to reproduce this gradient is critically dependent on the accuracy at which the interhemispheric tracer exchange and the large‐scale hydroxyl radical distribution are represented. As a consequence, the inversion‐derived emission estimates are sensitive to errors in the transport model and the calculated hydroxyl radical distribution. In fact, a considerable contribution of these model errors cannot be ignored. This underscores that source quantification by inverse modeling is limited by the extent to which the rate of interhemispheric transport and the hydroxyl radical distribution can be validated. We show that the use of temporal and spatial correlations of emissions may significantly improve our results; however, at present the experimental support for such correlations is lacking. Our results further indicate that uncertainty reductions reported in previous inverse studies of methane have been overestimated.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 114, No. D22 ( 2009-11-17)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2009
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2007
    In:  Eos, Transactions American Geophysical Union Vol. 88, No. 49 ( 2007-12-04), p. 542-543
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 88, No. 49 ( 2007-12-04), p. 542-543
    Abstract: Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO 2 ) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonly held perception, our quantitative knowledge about these emissions is insufficient to satisfy current scientific and policy needs. A more highly spatially and temporally resolved quantification of the social and economic drivers of fossil fuel combustion, and the resulting CO 2 emissions, is essential to supporting scientific and policy progress. In this article, a new community of emissions researchers called the CO 2 Fossil Fuel Emission Effort (CO 2 FFEE) outlines a research agenda to meet the need for improved fossil fuel CO 2 emissions information and solicits comment from the scientific community and research agencies.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Earth System Dynamics Vol. 9, No. 2 ( 2018-05-28), p. 663-677
    In: Earth System Dynamics, Copernicus GmbH, Vol. 9, No. 2 ( 2018-05-28), p. 663-677
    Abstract: Abstract. Temperature exerts strong controls on the incidence and severity of fire. All else equal, warming is expected to increase fire-related carbon emissions, and thereby atmospheric CO2. But the magnitude of this feedback is very poorly known. We use a single-box model of the land biosphere to quantify this positive feedback from satellite-based estimates of biomass burning emissions for 2000–2014 CE and from sedimentary charcoal records for the millennium before the industrial period. We derive an estimate of the centennial-scale feedback strength of 6.5 ± 3.4 ppm CO2 per degree of land temperature increase, based on the satellite data. However, this estimate is poorly constrained, and is largely driven by the well-documented dependence of tropical deforestation and peat fires (primarily anthropogenic) on climate variability patterns linked to the El Niño–Southern Oscillation. Palaeo-data from pre-industrial times provide the opportunity to assess the fire-related climate–carbon-cycle feedback over a longer period, with less pervasive human impacts. Past biomass burning can be quantified based on variations in either the concentration and isotopic composition of methane in ice cores (with assumptions about the isotopic signatures of different methane sources) or the abundances of charcoal preserved in sediments, which reflect landscape-scale changes in burnt biomass. These two data sources are shown here to be coherent with one another. The more numerous data from sedimentary charcoal, expressed as normalized anomalies (fractional deviations from the long-term mean), are then used – together with an estimate of mean biomass burning derived from methane isotope data – to infer a feedback strength of 5.6 ± 3.2 ppm CO2 per degree of land temperature and (for a climate sensitivity of 2.8 K) a gain of 0.09 ± 0.05. This finding indicates that the positive carbon cycle feedback from increased fire provides a substantial contribution to the overall climate–carbon-cycle feedback on centennial timescales. Although the feedback estimates from palaeo- and satellite-era data are in agreement, this is likely fortuitous because of the pervasive influence of human activities on fire regimes during recent decades.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmosphere, MDPI AG, Vol. 13, No. 6 ( 2022-05-30), p. 888-
    Abstract: This study investigates the contribution of different CH4 sources to the seasonal cycle of δ13C during 2000–2012 by using the TM5 atmospheric transport model, including spatially varying information on isotopic signatures. The TM5 model is able to produce the background seasonality of δ13C, but the discrepancies compared to the observations arise from incomplete representation of the emissions and their source-specific signatures. Seasonal cycles of δ13C are found to be an inverse of CH4 cycles in general, but the anti-correlations between CH4 and δ13C are imperfect and experience a large variation (p=−0.35 to −0.91) north of 30° S. We found that wetland emissions are an important driver in the δ13C seasonal cycle in the Northern Hemisphere and Tropics, and in the Southern Hemisphere Tropics, emissions from fires contribute to the enrichment of δ13C in July–October. The comparisons to the observations from 18 stations globally showed that the seasonal cycle of EFMM emissions in the EDGAR v5.0 inventory is more realistic than in v4.3.2. At northern stations (north of 55° N), modeled δ13C amplitudes are generally smaller by 12–68%, mainly because the model could not reproduce the strong depletion in autumn. This indicates that the CH4 emission magnitude and seasonal cycle of wetlands may need to be revised. In addition, results from stations in northern latitudes (19–40° N) indicate that the proportion of biogenic to fossil-based emissions may need to be revised, such that a larger portion of fossil-based emissions is needed during summer.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: eLife, eLife Sciences Publications, Ltd, Vol. 10 ( 2021-01-18)
    Abstract: Germline mutations in the Folliculin ( FLCN ) tumor suppressor gene cause Birt–Hogg–Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanism by which FLCN prevents kidney cancer remains unknown. Here, we show that disrupting FLCN in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, the absence of FLCN or its binding partners FNIP1/FNIP2 induces interferon response genes independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence immune responses. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2021
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 118, No. 20 ( 2013-10-27), p. 11,807-11,823
    Type of Medium: Online Resource
    ISSN: 2169-897X
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 118, No. 9 ( 2013-05-16), p. 3891-3904
    Type of Medium: Online Resource
    ISSN: 2169-897X
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 41, No. 7 ( 2014-04-16), p. 2598-2605
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2014
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...