GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Molecular Diagnostics, Elsevier BV, Vol. 23, No. 12 ( 2021-12), p. 1787-1799
    Type of Medium: Online Resource
    ISSN: 1525-1578
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2032654-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood Advances, American Society of Hematology, Vol. 6, No. 1 ( 2022-01-11), p. 152-164
    Abstract: Numerous studies have been performed over the last decade to exploit the complexity of genomic and transcriptomic lesions driving the initiation of acute myeloid leukemia (AML). These studies have helped improve risk classification and treatment options. Detailed molecular characterization of longitudinal AML samples is sparse, however; meanwhile, relapse and therapy resistance represent the main challenges in AML care. To this end, we performed transcriptome-wide RNA sequencing of longitudinal diagnosis, relapse, and/or primary resistant samples from 47 adult and 23 pediatric AML patients with known mutational background. Gene expression analysis revealed the association of short event-free survival with overexpression of GLI2 and IL1R1, as well as downregulation of ST18. Moreover, CR1 downregulation and DPEP1 upregulation were associated with AML relapse both in adults and children. Finally, machine learning–based and network-based analysis identified overexpressed CD6 and downregulated INSR as highly copredictive genes depicting important relapse-associated characteristics among adult patients with AML. Our findings highlight the importance of a tumor-promoting inflammatory environment in leukemia progression, as indicated by several of the herein identified differentially expressed genes. Together, this knowledge provides the foundation for novel personalized drug targets and has the potential to maximize the benefit of current treatments to improve cure rates in AML.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 37-38
    Abstract: Acute myeloid leukemia (AML) is the overall most common form of acute leukemia, characterized by a high relapse frequency and low long-term survival rate especially for adults. Even though children with AML have a better prognosis than adults, patients with recurrent AML - independent of age - show poorer overall survival, accelerated disease progression and they often do not respond to conventional treatment. Therefore, a more personalized treatment approach is required to prolong event free survival (EFS) and expand treatment options for relapse and primary resistant (R/PR) AML patients. During the last decade, AML research has largely been focused on improving diagnostic and prognostic tools in AML by investigating data derived from whole genome- and whole exome sequencing (WGS and WES, respectively), gene panels or differential expression analyses of individual genes and gene-fusions. Nevertheless, studies on relapsing AML incorporating WGS data are rare, although necessary to investigate the full repertoire of genetic aberrations underlying AML progression and therapy resistance. To this end, we applied a combination of WGS (WES for a subset of cases) and RNA-seq of longitudinal samples from 48 adult and 21 pediatric R/PR AML cases from the Nordic countries. These comprised tumor samples collected at diagnosis (n=49) and relapse (n=76), as well as PR specimens (n=6). Normal bone marrow (BM) derived stromal cells were cultivated from leukemic BM as a source of patient-matched constitutional DNA, while CD34+ BM cells from five healthy donors were used as a source of normal control RNA. Our findings reveal recurrent relapse specific mutations in CSF1R (2.9% of relapse cases) not previously reported in de novo AML, suggesting the use of receptor tyrosine kinase inhibitors as a novel therapeutic option for a subset of AML relapse cases. Further, we report specific differences in the mutational spectrum between adult and pediatric R/PR AML. In adults, we detected higher mutational frequencies of, for instance, ARID1A (6.3%), H3F3A (6.3%) and MGA (10.4%) compared with previous AML studies of only specimens from initial diagnosis, while these mutations were not seen in pediatric AML. In contrast, internal tandem duplications (ITDs) in UBTF were detected solely in pediatric relapsing AML (n=3 [14.3%]). IKZF1 was more frequently mutated in pediatric R/PR AML (14.3%) than previously reported (0.5-2.7%; Bolouri et al., Nat Med. 2018; Shiba et al., Br J Haematol, 2016). Also, differential gene expression analysis identified IKZF1 as downregulated in pediatric chemotherapy resistant samples in comparison with treatment responsive counterparts, independent of IKZF1 mutational status. By investigating differential gene expression patterns of longitudinal samples, we found lower expression of the complement inhibitor CR1/CD35 at relapse compared to their patient matched diagnostic samples in both adults and children. Additionally, IL1R1, encoding a key regulator of inflammation and immune response, was upregulated in both adult and pediatric diagnosis specimens from cases with short EFS, indicating a pronounced role of chronic inflammation during disease progression and AML cell survival. Finally, our findings reveal overexpression of GLI2 and SGMS2 among samples associated with short EFS. Overexpression of these genes may prevent excessive cell proliferation while increasing stemness and dormancy, leading to increased chemotherapy resistance and shorter EFS. Taken together, our results emphasize the advantage of applying a combination of WGS and RNA-seq, to be able to gain a more complete picture of alterations, including mutations, gene fusions and copy number alterations combined with gene expression analysis, when attempting to characterize AML at relapse. This is the first study of both adult and pediatric AML incorporating WGS and RNA-seq analyses on sequential AML samples. Knowledge gathered from this study has provided critical new insights into the biologic basis of this complex disease and will hopefully help to pave the way for improved and individualized treatment strategies. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 280-280
    Abstract: Acute lymphoblastic leukemia (ALL) is the most common cancer of childhood. Specific genetic subsets, including hypodiploid ALL, are associated with particularly high rates of relapse. Despite the poor outcomes of hypodiploid B-ALL with traditional therapeutic approaches, there have been no known effective alternative therapies or novel candidates tested to improve outcome. We hypothesized that new therapeutic targets could by identified by integrated biochemical and genomic profiling, combined with functional drug assays in order to determine which pathways play an essential role in transformation. For biochemical profiling, we analyzed multiple pathways commonly deregulated in leukemias using phosphoflowcytometry (including receptor tyrosine kinases, JAK/STAT, MAPK, PI3K, PTEN, Bcl-2 survival and pro-apoptotic family members and p53). We subjected hypodiploid cell lines (NALM-16, MHH-CALL2) and patient derived xenograft samples in vitro to inhibitors against each of these pathways (PP2:Src family;Ruxolitinib: JAK/STAT; PD235901/CI1040: MAPK; GDC-0941, PI-90, PI-103, p110 (a, b, g, d): PI3K isoform specific; PP-242:mTOR; ABT-263/ABT-737: Bcl-2/Bcl-xl, and ABT-199: Bcl-2 specific). We found that the Bcl-2 inhibitors (ABT-263, ABT-737 and ABT-199) and to a lesser extent PI3K pathway inhibitors GDC-0941 and PP-242, but not the MAPK or RTK inhibitors, efficiently reduced proliferation of hypodiploid cells. However, only ABT-263/ABT-199 induced high levels of apoptosis at nanomolar concentrations. Based on the consistent efficacy observed with ABT-199 against hypodiploid patient-derived cells and cell lines in culture, we selected eight cryopreserved, previously xenografted (F3 generation) hypodiploid patient samples (4 low hypodiploid, chromosomal number between 32 and 39; and 4 Near Haploid, chromosomal number between 24 and 31) and three non-hypodiploid patient samples (Ph-positive,Ph-Like and Erg+) for a preclinical trial in immunodeficient mice. Each patient sample was engrafted into six mice, which were randomized to receive vehicle or ABT-199 daily over 60 days (Figure 1). Treatment started when the peripheral blood (PB) human CD45 count reached 15%. A rapid decrease in PB blasts was noted at 7 days (Figure 1). Eighty-five percent of the hypodiploid xenografts survived 60 days with either undetectable or low levels of leukemia in the PB. In contrastPh+ andPh-Like xenografts died within 10-20 days regardless of treatment. Importantly, hypodiploid leukemic blasts gradually emerged after discontinuing ABT-199 after 60 days. Additionally, despite low or undetectable levels of leukemic blasts in PB and reduced levels in bone marrow and spleen, all mice had high percentages of leukemic cells in the liver (Figure 2). In conclusion we have identified the survival protein Bcl-2 as a promising molecular target in hypodiploid B-ALL. ABT-199 for dramatically reduced leukemia cells in vitro and in vivo in patient-derived xenograft models of hypodiploid B-ALL. However, the liver represented a protective niche for these leukemias. In addition, our biochemical characterization of the organ infiltrating blasts collected from mice on trial indicate that the sensitivity of hypodiploid ALL to ABT-199 relies not only on high levels of Bcl-2 and deficiency for other survival proteins such as Bcl-xl but also on high levels of proapoptotic proteins, providing two different signatures that correlate with response to ABT-199. Using genome editing (CRISPR/Cas9) we interrogated the necessity for individual proapoptotic genes, including PUMA, NOXA, and BAD, for ABT-199-induced cell death. This study provides encouraging preclinical data that Bcl-2 may be a promising target for the treatment of hypodiploid B-ALL. Our studies identify signature biomarkers that correlate with drug response and identify essential proteins mediating ABT-199-induced cell death. Importantly, this report also identifies the limitations of using ABT-199 as single drug, and provides the rationale for using combinatorial therapies in order to improve the efficacy of the drug. Disclosures Mullighan: Loxo Oncology: Research Funding; Amgen: Speakers Bureau; Incyte: Membership on an entity's Board of Directors or advisory committees. Loh:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Abbvie: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 141, No. 7 ( 2023-02-16), p. 800-805
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Methods, Springer Science and Business Media LLC, Vol. 8, No. 8 ( 2011-8), p. 652-654
    Type of Medium: Online Resource
    ISSN: 1548-7091 , 1548-7105
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 2163081-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 45, No. 3 ( 2013-3), p. 242-252
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 47, No. 4 ( 2015-4), p. 330-337
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 69-69
    Abstract: Abstract 69 Infant ( 〈 1 year of age) acute lymphoblastic leukemia (ALL) is a rare disease characterized by rearrangements of the Mixed Lineage Leukemia (MLL) gene at 11q23 and a poor prognosis. In an effort to determine the total complement of somatic mutations occurring in this high risk leukemia, we performed paired-end whole genome sequencing (WGS) on diagnostic leukemia blasts and matched germ line samples from 22 infants with MLL rearranged ALL using the Illumina platform. In addition, we sequenced 2 paired relapse samples. Somatic alterations, including single nucleotide variations (SNV), and structural variations (SV) including insertions, deletions, inversion, and inter- and intra-chromosomal rearrangements were detected using complementary analysis pipelines including Bambino, CREST and CONSERTING. Validation of identified somatic mutations was performed using PCR amplification of the leukemia and germ line DNA followed by Sanger or 454-based sequencing, or by array-based capture followed by Illumina-based sequencing. Analysis of the structure of MLL rearrangements at the base pair level revealed that over half had complex rearrangements that involved either three or more chromosomes, or contained at the breakpoints deletions, amplifications, insertions, or inversion of sequences. In five of the complex cases, chromosomal rearrangements were predicted to generate not only a MLL-partner gene fusion, but also novel in-frame fusions including KRAS-MLL; RAD51B-MLL / AFF1-RAD51B; MLLT10-CTNNAP3B; MLLT10-ATP5L / ATP5L-YPEL4; and CRTAM-GNL3. An analysis of the sequence surrounding the breakpoints of MLL and its partner genes suggest that the predominant mechanism of rearrangement involved non-homologous end joining. An analysis of the total number of non-silent mutations revealed infant ALL to have the lowest frequency of non-silent somatic mutations of any cancer sequenced to date. After removal of SVs and CNAs associated with the MLL rearrangements, a mean of only 2 somatic SVs and 2 SNVs affecting the coding region of annotated genes or regulatory RNAs were detected per case, with a range of non-silent mutation of between 0 and 11 per case (0–7 SV and 0–5 SNV). Despite the paucity of mutations several pathways were recurrently targeted. Mutations leading to activation of signaling through the PI3K/RAS pathway was observed in 45% of the cases with mutation of individual components including KRAS (n=4), NRAS (n=2), and non-recurrent mutations in NF1, PTPN11, PIK3R1, and the GTPase activating protein ARHGAP32 (p200Rho/GAP), which mediates cross-talk between RAS and Rho signaling. Other pathways altered include B cell differentiation, with 23% of cases containing mono-allelic deletion or gains of PAX5, 14% with deletions of the CDKN2A/B, and 2 cases with focal deletions of the non-coding RNA genes DLEU1/2. WGS of two infant ALL relapse samples and comparison with the data from their matched diagnostic samples revealed a marked increase in the number of mutations at relapse with additional SVs, SNVs, and CNAs identified. Moreover, an analysis of the allelic ratios of mutated genes revealed clonal heterogeneity at diagnosis with relapse appearing to arise from a minor diagnostic clone. Because of the exceedingly low frequency of mutations detected in infant ALL, we decided to define the frequency of non-silent SNVs in MLL rearranged leukemia occurring in older children (7–19 years of age). Exome sequencing was performed on 13 MLL leukemias (8 ALLs and 5 AMLs). This analysis revealed that non-infant pediatric MLL rearranged leukemias harbor a significantly higher number of non-silent somatic SNVs than infant ALL (mean 8/case in older patients versus 2/case in infants, p 〈 0.001). Although the increased frequency of mutations may be a reflection of the older age, the low number of cooperating mutations in infants raises the possibility that the target cell of transformation differs between infants and older children, with the cells present during early development requiring fewer cooperating mutations to induce leukemia. In summary our analysis demonstrated an exceedingly small number of mutations required to generate infant MLL rearranged leukemia. The number of detected somatic mutations may represent the lower limit of mutations required to transform a normal human cell into cancer. Disclosures: Fioretos: Cantargia AB: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Qlucore AB: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 118, No. 15 ( 2011-10-13), p. 4169-4173
    Abstract: The BCL11B transcription factor is required for normal T-cell development, and has recently been implicated in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) induced by TLX overexpression or Atm deficiency. To comprehensively assess the contribution of BCL11B inactivation to human T-ALL, we performed DNA copy number and sequencing analyses of T-ALL diagnostic specimens, revealing monoallelic BCL11B deletions or missense mutations in 9% (n = 10 of 117) of cases. Structural homology modeling revealed that several of the BCL11B mutations disrupted the structure of zinc finger domains required for this transcription factor to bind DNA. BCL11B haploinsufficiency occurred across each of the major molecular subtypes of T-ALL, including early T-cell precursor, HOXA-positive, LEF1-inactivated, and TAL1-positive subtypes, which have differentiation arrest at diverse stages of thymocyte development. Our findings provide compelling evidence that BCL11B is a haploinsufficient tumor suppressor that collaborates with all major T-ALL oncogenic lesions in human thymocyte transformation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...