GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Journal of Instrumentation, IOP Publishing, Vol. 17, No. 01 ( 2022-01-01), p. P01013-
    Abstract: The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.
    Type of Medium: Online Resource
    ISSN: 1748-0221
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2235672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Annals of Intensive Care, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-12)
    Abstract: The acute respiratory distress syndrome (ARDS) is a life-threatening condition. In special situations, these critically ill patients must be transferred to specialized centers for escalating treatment. The aim of this study was to evaluate the quality of inter-hospital transport (IHT) of ARDS patients. Methods We evaluated medical and organizational aspects of structural and procedural quality relating to IHT of patients with ARDS in a prospective nationwide ARDS study. The qualification of emergency staff, the organizational aspects and the occurrence of critical events during transport were analyzed. Results Out of 1234 ARDS patients, 431 (34.9%) were transported, and 52 of these (12.1%) treated with extracorporeal membrane oxygenation. 63.1% of transferred patients were male, median age was 54 years, and 26.8% of patients were obese. All patients were mechanically ventilated during IHT. Pressure-controlled ventilation was the preferred mode (92.1%). Median duration to organize the IHT was 165 min. Median distance for IHT was 58 km, and median duration of IHT 60 min. Forty-two patient-related and 8 technology-related critical events (11.6%, 50 of 431 patients) were observed. When a critical event occurred, the PaO 2 /FiO 2 ratio before transport was significant lower (68 vs. 80 mmHg, p  = 0.017). 69.8% of physicians and 86.7% of paramedics confirmed all transfer qualifications according to requirements of the German faculty guidelines (DIVI). Conclusions The transport of critically ill patients is associated with potential risks. In our study the rate of patient- and technology-related critical events was relatively low. A severe ARDS with a PaO 2 /FiO 2 ratio  〈  70 mmHg seems to be a risk factor for the appearance of critical events during IHT. The majority of transport staff was well qualified. Time span for organization of IHT was relatively short. ECMO is an option to transport patients with a severe ARDS safely to specialized centers. Trial registration NCT02637011 (ClinicalTrials.gov, Registered 15 December 2015, retrospectively registered)
    Type of Medium: Online Resource
    ISSN: 2110-5820
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2617094-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Ecology and Conservation, Elsevier BV, Vol. 24 ( 2020-12), p. e01215-
    Type of Medium: Online Resource
    ISSN: 2351-9894
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2814786-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Ornithology, Springer Science and Business Media LLC, Vol. 159, No. 4 ( 2018-10), p. 893-899
    Type of Medium: Online Resource
    ISSN: 2193-7192 , 2193-7206
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2134595-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Biodiversity and Conservation Vol. 28, No. 6 ( 2019-5), p. 1611-1628
    In: Biodiversity and Conservation, Springer Science and Business Media LLC, Vol. 28, No. 6 ( 2019-5), p. 1611-1628
    Type of Medium: Online Resource
    ISSN: 0960-3115 , 1572-9710
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2000787-5
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Global Change Biology, Wiley, Vol. 28, No. 3 ( 2022-02), p. 1048-1062
    Abstract: Fire shapes the world's terrestrial ecosystems and has been influencing biodiversity patterns for millennia. Anthropogenic drivers alter fire regimes. Wildfires can amplify changes in the structure, biodiversity and functioning of the fast‐warming tundra ecosystem. However, there is little evidence available, how these fires affect species diversity and community composition of tundra ecosystems over the long term. We studied long‐term fire effects on community composition and diversity at different trophic levels of the food web in the subarctic tundra of Western Siberia. In a space‐for‐time approach we compared three large fire scars ( 〉 44, 28 and 12 years old) to unburnt controls. We found that diversity (measured as species richness, Shannon index and evenness) of vascular and non‐vascular plants and birds was strongly affected by fire, with the greatest species richness of plants and birds for the intermediate‐age fire scar (28 years). Species composition of plants and birds still differed from that of the control 〉 44 years after fire. Increased deciduous shrub cover was related to species richness of all plants in a hump‐shaped manner. The proportion of southern (taiga) bird species was highest in the oldest fire scar, which had the highest shrub cover. We conclude that tundra fires have long‐term legacies with regard to species diversity and community composition. They may also increase landscape‐scale species richness and facilitate range expansions of more southerly distributed species to the subarctic tundra ecosystem.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Remote Sensing, MDPI AG, Vol. 12, No. 1 ( 2019-12-20), p. 38-
    Abstract: Information on habitat preferences is critical for the successful conservation of endangered species. For many species, especially those living in remote areas, we currently lack this information. Time and financial resources to analyze habitat use are limited. We aimed to develop a method to describe habitat preferences based on a combination of bird surveys with remotely sensed fine-scale land cover maps. We created a blended multiband remote sensing product from SPOT 6 and Landsat 8 data with a high spatial resolution. We surveyed populations of three bird species (Yellow-breasted Bunting Emberiza aureola, Ochre-rumped Bunting Emberiza yessoensis, and Black-faced Bunting Emberiza spodocephala) at a study site in the Russian Far East using hierarchical distance sampling, a survey method that allows to correct for varying detection probability. Combining the bird survey data and land cover variables from the remote sensing product allowed us to model population density as a function of environmental variables. We found that even small-scale land cover characteristics were predictable using remote sensing data with sufficient accuracy. The overall classification accuracy with pansharpened SPOT 6 data alone amounted to 71.3%. Higher accuracies were reached via the additional integration of SWIR bands (overall accuracy = 73.21%), especially for complex small-scale land cover types such as shrubby areas. This helped to reach a high accuracy in the habitat models. Abundances of the three studied bird species were closely linked to the proportion of wetland, willow shrubs, and habitat heterogeneity. Habitat requirements and population sizes of species of interest are valuable information for stakeholders and decision-makers to maximize the potential success of habitat management measures.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2019
    In:  Bird Conservation International Vol. 29, No. 03 ( 2019-09), p. 454-462
    In: Bird Conservation International, Cambridge University Press (CUP), Vol. 29, No. 03 ( 2019-09), p. 454-462
    Abstract: The ‘Vulnerable’ Swinhoe’s Rail Coturnicops exquisitus is believed to occur in only two regions in Russia’s Far East and China’s Heilongjiang province, separated by more than 1,000 km. Recent observations suggest that the Amur region, situated between the two known populations, might be inhabited by this secretive species as well. As the species is rather similar in appearance and field characteristics to its Nearctic sister taxon, the Yellow Rail C. noveboracensis , and almost all field records relate to flushed individuals in flight, we aimed to complement the field observations by genetic evidence. Samples were obtained from four individuals and one eggshell and their mitochondrial cytochrome b genes were amplified and sequenced. The genetic analyses unequivocally confirmed that swab samples and eggshell were attributable to Swinhoe’s Rail, thus constituting the first known breeding record of this species for 110 years. It is therefore likely that the individuals observed in the field also belonged to this species. It seems possible that Swinhoe’s Rail is more widely distributed in the Amur region and was overlooked in the past, possibly due to a misleading description of its calls in the literature.
    Type of Medium: Online Resource
    ISSN: 0959-2709 , 1474-0001
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2037673-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Annals of Intensive Care, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-12)
    Abstract: Acute respiratory distress syndrome (ARDS) is a life-threatening condition that often requires prolonged mechanical ventilation. Tracheostomy is a common procedure with some risks, on the other hand with potential advantages over orotracheal intubation in critically ill patients. This study investigated the association of tracheostomy with health-related quality of life (HRQoL), symptoms of psychiatric disorders and return-to-work of ARDS survivors. Methods Data were collected in the context of the prospective observational German-wide DACAPO study. Clinical and demographic patient data and treatment characteristics were obtained from the participating intensive care units (ICU). HRQoL and return-to-work were assessed using patient-reported questionnaires 3, 6 and 12 months after ICU discharge. HRQoL was measured with the Physical and Mental Component Scale of the Short-Form 12 Questionnaire (PCS-12, MCS-12). The prevalence of psychiatric symptoms (depression and post-traumatic stress disorder [PTSD]) was assessed using the Patient Health Questionnaire-9 and the Post-Traumatic Stress Syndrome-14. Physician-diagnosed anxiety and obsessive–compulsive disorder were recorded by patient self-report in the follow-up questionnaires. The associations of tracheostomy with HRQoL, psychiatric symptoms and return-to-work after 12 months were investigated by means of multivariable linear and logistic regression models. Results Primary 877 ARDS patients (mean ± standard deviation: 54 ± 16 years, 68% male) survived and were discharged from ICU. Out of these patients, 478 (54.5%) were tracheotomised during ICU treatment. After 12 months, patient-reported outcomes could be analysed of 388 (44.2%) respondents, 205 with tracheostomy and 183 without. One year after ICU discharge, tracheostomy showed no significant association with physical or mental health-related quality of life (PCS-12: − 0.73 [− 3.96, 2.51]; MCS-12: − 0.71 [− 4.92, 3.49] ), symptoms of psychiatric disorders (depression: 0.10 [− 1.43, 1.64]; PTSD: 3.31 [− 1.81, 8.43] ; anxiety: 1.26 [0.41, 3.86]; obsessive–compulsive disorder: 0.59 [0.05, 6.68] ) or return-to-work (0.71 [0.31, 1.64]) in the multivariable analysis (OR [95%-CI] ). Conclusions Up to 1 year after ICU discharge, neither HRQoL nor symptoms of psychiatric disorders nor return-to-work was affected by tracheostomy. Trial registration NCT02637011 (ClinicalTrials.gov, Registered 15 December 2015, retrospectively registered)
    Type of Medium: Online Resource
    ISSN: 2110-5820
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2617094-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...