GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hydrological Processes, Wiley, Vol. 34, No. 18 ( 2020-08-30), p. 3824-3841
    Abstract: Headwaters are generally assumed to contribute the majority of water to downstream users, but how much water, of what quality and where it is generated are rarely known in the humid tropics. Here, using monthly monitoring in the data scarce (2,370 km 2 ) San Carlos catchment in northeastern Costa Rica, we determined runoff‐area relationships linked to geochemical and isotope tracers. We established 46 monitoring sites covering the full range of climatic, land use and geological gradients in the catchment. Regression and cluster analysis revealed unique spatial patterns and hydrologically functional landscape units. These units were used for seasonal and annual Bayesian tracer mixing models to assess spatial water source contributions to the outlet. Generally, the Bayesian mixing analysis showed that the chemical and isotopic imprint at the outlet is throughout the year dominated by the adjacent lowland catchments (68%) with much less tracer influence from the headwaters. However, the headwater catchments contributed the bulk of water and tracers to the outlet during the dry season ( 〉 50%) despite covering less than half of the total catchment area. Additionally, flow volumes seemed to be linearly scaled by area maintaining a link between the headwaters and the outlet particularly during high flows of the rainy season. Stable isotopes indicated mean recharge elevations above the mean catchment altitude, which further supports that headwaters were the primary source of downstream water. Our spatially detailed “snap‐shot” sampling enabled a viable alternative source of large‐scale hydrological process knowledge in the humid tropics with limited data availability.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Hydrological Processes, Wiley, Vol. 32, No. 21 ( 2018-10-15), p. 3206-3224
    Abstract: Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km 2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Hydrological Processes, Wiley, Vol. 34, No. 25 ( 2020-12-15), p. 4776-4793
    Abstract: Pristine tropical forests play a critical role in regional and global climate systems. For a better understanding of the eco‐hydrology of tropical “evergreen” vegetation, it is essential to know the partitioning of water into transpiration and evaporation, runoff and associated water ages. For this purpose, we evaluated how topography and vegetation influence water flux and age dynamics at high temporal (hourly) and spatial (10 m) resolution using the Spatially Distributed Tracer‐Aided Rainfall‐Runoff model for the tropics (STARR tropics ). The model was applied in a tropical rainforest catchment (3.2 km 2 ) where data were collected biweekly to monthly and during intensive monitoring campaigns from January 2013 to July 2018. The STARR tropics model was further developed, incorporating an isotope mass balance for evapotranspiration partitioning into transpiration and evaporation. Results exhibited a rapid streamflow response to rainfall inputs (water and isotopes) with limited mixing and a largely time‐invariant baseflow isotope composition. Simulated soil water storage showed a transient response to rainfall inputs with a seasonal component directly resembling the streamflow dynamics which was independently evaluated using soil water content measurements. High transpiration fluxes (max 7 mm/day) were linked to lower slope gradients, deeper soils and greater leaf area index. Overall water partitioning resulted in 65% of the actual evapotranspiration being driven by vegetation with high transpiration rates over the drier months compared to the wet season. Time scales of water age were highly variable, ranging from hours to a few years. Stream water ages were conceptualized as a mixture of younger soil water and slightly older, deeper soil water and shallow groundwater with a maximum age of roughly 2 years during drought conditions (722 days). The simulated soil water ages ranged from hours to 162 days and for shallow groundwater up to 1,200 days. Despite the model assumptions, experimental challenges and data limitation, this preliminary spatially distributed model study enhances knowledge about the water ages and overall young water dominance in a tropical rainforest with little influence of deeper and older groundwater.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Forests, MDPI AG, Vol. 12, No. 7 ( 2021-07-07), p. 889-
    Abstract: Coffee is one of the most commonly traded agricultural commodities globally. It is important for the livelihoods of over 25 million families worldwide, but it is also a crop sensitive to climate change, which has forced producers to implement management practices with effects on carbon balance and water use efficiency (WUE) that are not well understood due to data scarcity. From this perspective, we propose crop canopy coupling to the atmosphere (Ώ) as an index of resilience and stability. We undertook an integrated observational approach for the scaling-up of measurements along the soil–plant–atmosphere continuum at different stages of the coffee crop phenological cycle. Additionally, we develop this perspective under pronounced climatic seasonality and variability, in order to assess carbon balance, WUE, and agroecosystem resilience in a sun-grown coffee field. Further, we devised a field layout that facilitates the measurement of intrinsic, instantaneous, and actual water use efficiency and the assessment of whether coffee fields differ in canopy structure, complexity, and agronomic management and whether they are carbon sources or sinks. Partitioning soil and canopy energy balances and fluxes in a sun-grown coffee field using eco-physiological techniques at the leaf and whole plant levels (i.e., sap flow and gas exchange), as proposed here, will allow the scaling-up to whole fields in the future. Eddy covariance was used to assess real-time surface fluxes of carbon, gross primary productivity (GPP), and evapotranspiration, as well as components of the energy balance and WUE. The preliminary results support the approach used here and suggested that coffee fields are CO2 sinks throughout the year, especially during fruit development, and that the influence of seasonality drives the surface–atmosphere coupling, which is dominant prior to and during the first half of the rainy season. The estimated WUE showed consistency with independent studies in coffee crops and a marked seasonality driven by the features of the rainy season. A plan for the arborization of the coffee agroecosystem is suggested and the implications for WUE are described. Future comparison of sun- and shade-grown coffee fields and incorporation of other variables (i.e., crop coefficient-KC for different leaf area index (LAI) values) will allow us to better understand the factors controlling WUE in coffee agroecosystems.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Earth-Science Reviews, Elsevier BV, Vol. 201 ( 2020-02), p. 103070-
    Type of Medium: Online Resource
    ISSN: 0012-8252
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1792-9
    detail.hit.zdb_id: 2012642-6
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Journal of Geophysical Research Vol. 115, No. D5 ( 2010-03-04)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 115, No. D5 ( 2010-03-04)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Atmosphere Vol. 11, No. 9 ( 2020-09-09), p. 959-
    In: Atmosphere, MDPI AG, Vol. 11, No. 9 ( 2020-09-09), p. 959-
    Abstract: The Intra–Americas Seas region is known for its relevance to air–sea interaction processes, the contrast between large water masses and a relatively small continental area, and the occurrence of extreme events. The differing weather systems and the influence of variability at different spatio–temporal scales is a characteristic feature of the region. The impact of hydro–meteorological extreme events has played a huge importance for regional livelihood, having a mostly negative impact on socioeconomics. The frequency and intensity of heavy rainfall events and droughts are often discussed in terms of their impact on economic activities and access to water. Furthermore, future climate projections suggest that warming scenarios are likely to increase the frequency and intensity of extreme events, which poses a major threat to vulnerable communities. In a region where the economy is largely dependent on agriculture and the population is exposed to the impact of extremes, understanding the climate system is key to informed policymaking and management plans. A wealth of knowledge has been published on regional weather and climate, with a majority of studies focusing on specific components of the system. This study aims to provide an integral overview of regional weather and climate suitable for a wider community. Following the presentation of the general features of the region, a large scale is introduced outlining the main structures that affect regional climate. The most relevant climate features are briefly described, focusing on sea surface temperature, low–level circulation, and rainfall patterns. The impact of climate variability at the intra–seasonal, inter–annual, decadal, and multi–decadal scales is discussed. Climate change is considered in the regional context, based on current knowledge for natural and anthropogenic climate change. The present challenges in regional weather and climate studies have also been included in the concluding sections of this review. The overarching aim of this work is to leverage information that may be transferred efficiently to support decision–making processes and provide a solid foundation on regional weather and climate for professionals from different backgrounds.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2012
    In:  Reviews of Geophysics Vol. 50, No. 4 ( 2012-11-08)
    In: Reviews of Geophysics, American Geophysical Union (AGU), Vol. 50, No. 4 ( 2012-11-08)
    Type of Medium: Online Resource
    ISSN: 8755-1209
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2035391-1
    detail.hit.zdb_id: 209852-0
    detail.hit.zdb_id: 209853-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2011
    In:  Eos, Transactions American Geophysical Union Vol. 92, No. 23 ( 2011-06-07), p. 193-194
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 92, No. 23 ( 2011-06-07), p. 193-194
    Abstract: Globally, the hydrological cycle is characterized by the evaporation of about 500,000 cubic kilometers of water per year, of which 86% is from the oceans and 14% is from the continents [ Quante and Matthias , 2006]. Most of the water that evaporates from the oceans (90%) is precipitated back into them, while the remaining 10% is transported to the continents, where the water precipitates. About two thirds of this precipitation is recycled over the continents, and only one third runs off directly into the oceans. Because societies rely on secure water resources, it is important to understand the processes that govern the atmospheric tr ansport of moisture [ Trenberth et al. , 2003] and how they are related to precipitation over land. Research on these processes is also related to studies on the energetic coupling of the land‐atmosphere system, as well as to paleoclimatology; studies on the latter aim to extract information on past states of the climate system from records such as those of ice cores and stalagmites.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2011
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Earth System Dynamics Vol. 8, No. 1 ( 2017-02-28), p. 147-161
    In: Earth System Dynamics, Copernicus GmbH, Vol. 8, No. 1 ( 2017-02-28), p. 147-161
    Abstract: Abstract. A climatology of moisture sources linked with Central American precipitation was computed based upon Lagrangian trajectories for the analysis period 1980–2013. The response of the annual cycle of precipitation in terms of moisture supply from the sources was analysed. Regional precipitation patterns are mostly driven by moisture transport from the Caribbean Sea (CS). Moisture supply from the eastern tropical Pacific (ETPac) and northern South America (NSA) exhibits a strong seasonal pattern but weaker compared to CS. The regional distribution of rainfall is largely influenced by a local signal associated with surface fluxes during the first part of the rainy season, whereas large-scale dynamics forces rainfall during the second part of the rainy season. The Caribbean Low Level Jet (CLLJ) and the Chocó Jet (CJ) are the main conveyors of regional moisture, being key to define the seasonality of large-scale forced rainfall. Therefore, interannual variability of rainfall is highly dependent of the regional LLJs to the atmospheric variability modes. The El Niño–Southern Oscillation (ENSO) was found to be the dominant mode affecting moisture supply for Central American precipitation via the modulation of regional phenomena. Evaporative sources show opposite anomaly patterns during warm and cold ENSO phases, as a result of the strengthening and weakening, respectively, of the CLLJ during the summer months. Trends in both moisture supply and precipitation over the last three decades were computed, results suggest that precipitation trends are not homogeneous for Central America. Trends in moisture supply from the sources identified show a marked north–south seesaw, with an increasing supply from the CS Sea to northern Central America. Long-term trends in moisture supply are larger for the transition months (March and October). This might have important implications given that any changes in the conditions seen during the transition to the rainy season may induce stronger precipitation trends.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...