GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cell, Elsevier BV, Vol. 184, No. 25 ( 2021-12), p. 6119-6137.e26
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, Springer Science and Business Media LLC, Vol. 586, No. 7828 ( 2020-10-08), p. 292-298
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 22_Supplement ( 2020-11-15), p. PO-058-PO-058
    Abstract: Metastatic pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with few therapeutic options. Tumor transcriptional state is a strong predictor of clinical outcome in PDAC, with two primary cell states, basal-like and classical, identified by bulk transcriptional profiling. Basal-like tumors carry a worse prognosis, but the mechanisms underlying this survival difference, the degree of cellular heterogeneity within a given tumor, and the subtype-specific contributions from the local immune microenvironment are not well understood. In addition, there are ongoing efforts to use patient-derived organoid models as functional surrogates for an individual patient’s disease, but the degree to which patient transcriptional phenotypes are preserved in their matched organoid models remains unclear. Here, we describe a pipeline that enables both direct characterization of the liver metastatic niche via single-cell RNA-sequencing and functional assessment of PDAC tumor biology in patient-matched organoid models. Starting from core needle biopsies of metastatic PDAC lesions, we applied this approach to profile 22 patient samples and their matched organoid models using single-cell RNA-sequencing with Seq-Well. We demonstrate significant heterogeneity at the single-cell level across the basal-like to classical transcriptional spectrum. Basal-like cells expressed more mesenchymal and stem-like features, while classical cells expressed features of epithelial and pancreatic progenitor transcriptional programs. A population of “hybrid” malignant cells co-expressed markers of both basal-like and classical states, suggesting that these phenotypes lie on a continuum rather than as discrete entities. Microenvironmental composition also differed by subtype across T/NK and macrophage populations. Specifically, basal-like tumors exhibited tumor cell crosstalk with specific macrophage subsets, while classical tumors harbored greater immune infiltration and a relatively pro-angiogenic microenvironment, raising important considerations for subtype-specific microenvironmental directed therapy. Finally, we found that matched organoids exhibited transcriptional drift along the basal-like to classical axis relative to their parent tumors, with evidence for selection against basal-like phenotypes in vitro. However, tumor cells in organoid culture exhibited remarkable plasticity and could recover in vivo basal-like phenotypes in response to changes in their growth conditions. Taken together, our work provides a framework for the analysis of human cancers and their matched models using single-cell methods to dissect tumor-intrinsic and extrinsic contributions, and reveals novel insights into the transcriptional heterogeneity and plasticity of PDAC. Citation Format: Srivatsan Raghavan, Peter S. Winter, Andrew W. Navia, Hannah L. Williams, Alan DenAdel, Radha L. Kalekar, Jennyfer Galvez-Reyes, Kristen E. Lowder, Nolawit Mulugeta, Manisha S. Raghavan, Ashir A. Borah, Sara A. Vayrynen, Andressa Dias Costa, Junning Wang, Emma Reilly, Dorisanne Y. Ragon, Lauren K. Brais, Alex M. Jaeger, James M. Cleary, Lorin Crawford, Jonathan A. Nowak, Brian M. Wolpin, William C. Hahn, Andrew J. Aguirre, Alex K. Shalek. Transcriptional subtype-specific microenvironmental crosstalk and tumor cell plasticity in metastatic pancreatic cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on Pancreatic Cancer; 2020 Sep 29-30. Philadelphia (PA): AACR; Cancer Res 2020;80(22 Suppl):Abstract nr PO-058.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 13, No. 3 ( 2023-03-01), p. 766-795
    Abstract: Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. Significance: We describe the identification of a heretofore unrecognized ubiquitin ligase complex that prevents the aberrant activation of the ISR in a subset of cancer cells. This provides a novel insight on the regulation of ISR and exposes a therapeutic opportunity to selectively eliminate these cancer cells. See related commentary Leli and Koumenis, p. 535. This article is highlighted in the In This Issue feature, p. 517
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cell Systems, Elsevier BV, Vol. 13, No. 4 ( 2022-04), p. 286-303.e10
    Type of Medium: Online Resource
    ISSN: 2405-4712
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2854138-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 73-73
    Abstract: Targeting of mutated oncogenes has led to the identification of new targeted therapies. However, druggable oncogenes do not occur in most cancers. Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 793 cancer cell lines to identify selective co-essentiality modules and found that a ubiquitination ligase complex composed of UBA6, BIRC6, KCMF1 and UBR4, which encode an E1, E2 and two heterodimeric E3 subunits, respectively, is required for the survival of a subset of epithelial tumors. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization and upregulation of the heme-regulated inhibitor (HRI), a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. Citation Format: Lisa D. Cervia, Tsukasa Shibue, Benjamin Gaeta, Ashir A. Borah, Lisa Leung, Naomi Li, Nancy Dumont, Alfredo Gonzalez, Nolan Bick, Mariya Kazachkova, Joshua M. Dempster, John M. Krill-Burger, Federica Piccioni, Namrata D. Udeshi, Meagan E. Olive, Steven A. Carr, David E. Root, James M. McFarland, Francisca Vazquez, William C. Hahn. A ubiquitination cascade regulating the integrated stress response and survival in carcinomas [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 73.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 4_Supplement ( 2022-02-15), p. P3-09-01-P3-09-01
    Abstract: Targeting of mutated oncogenes has led to the identification of new targeted therapies. However, druggable oncogenes do not occur in most cancers. Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 793 cancer cell lines to identify selective co-essentiality modules and found that a ubiquitination ligase complex composed of UBA6, BIRC6, KCMF1 and UBR4, which encode an E1, E2 and two heterodimeric E3 subunits, respectively, is required for the survival of a subset of epithelial tumors, particularly subtypes of breast cancer. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization and upregulation of the heme-regulated inhibitor (HRI), a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. Citation Format: Lisa D Cervia, Tsukasa Shibue, Benjamin Gaeta, Ashir A Borah, Lisa Leung, Naomi Li, Nancy Dumont, Alfredo Gonzalez, Nolan Bick, Mariya Kazachkova, Joshua M Dempster, John M Krill-Burger, Federica Piccioni, Namrata D Udeshi, Meagan E Olive, Steven A Carr, David E Root, James M McFarland, Francisca Vazquez, William C Hahn. A ubiquitination cascade regulating the integrated stress response and survival in carcinomas [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr P3-09-01.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2022
    In:  Cancer Research Vol. 82, No. 12_Supplement ( 2022-06-15), p. 1897-1897
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 1897-1897
    Abstract: Over a thousand genome-scale loss-of-function screens have been performed, as part of efforts such as The Cancer Dependency Map (DepMap), to establish the landscape of genetic dependencies across a diverse set of cancer cell lines. A key challenge to using this resource for therapeutic target discovery is discerning common or tissue-related gene dependencies from those that represent true cancer-specific vulnerabilities. Although many successful cancer-specific targets have been identified by synthetic lethality with patient-prevalent driver mutations, the number of novel synthetic lethals identified as more cancer cell lines are screened has been limited compared to the total number of newly observed selective dependencies. Better understanding of how these selective dependencies are connected to molecular features of the sensitive cell lines could unlock a wealth of potential targets. As part of the DepMap project at the Broad Institute, we created a software pipeline and interactive web-tool for researchers to interrogate the compendium of CRISPR and RNAi screens and systematically rank potential targets by several key factors, most notably selectivity, disease indication, and predictability from multi-omics features (WES, RNAseq, methylation, proteomics). A strength of our framework is the ability to explore the relationships between a dependency and its top predictive features since this could provide insights into the mechanism underlying the cellular dependency and aid in generating therapeutic hypotheses. Additionally, users can perform disease-specific analyses and incorporate annotations for small molecule tractability or drug availability. We anticipate this tool will lower the barrier to systematic genome-wide target discovery using DepMap and provide insights into strategies and best practices for nominating promising targets. Citation Format: John M. Krill-Burger, Ashir A. Borah, Brenton R. Paolella, James M. McFarland, Francisca Vazquez. Systematic methods to identify cancer vulnerabilities from genome-wide loss-of-function screens: An interactive framework for target discovery [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1897.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Genome Biology, Springer Science and Business Media LLC, Vol. 24, No. 1 ( 2023-08-23)
    Abstract: Hundreds of functional genomic screens have been performed across a diverse set of cancer contexts, as part of efforts such as the Cancer Dependency Map, to identify gene dependencies—genes whose loss of function reduces cell viability or fitness. Recently, large-scale screening efforts have shifted from RNAi to CRISPR-Cas9, due to superior efficacy and specificity. However, many effective oncology drugs only partially inhibit their protein targets, leading us to question whether partial suppression of genes using RNAi could reveal cancer vulnerabilities that are missed by complete knockout using CRISPR-Cas9. Here, we compare CRISPR-Cas9 and RNAi dependency profiles of genes across approximately 400 matched cancer cell lines. Results We find that CRISPR screens accurately identify more gene dependencies per cell line, but the majority of each cell line’s dependencies are part of a set of 1867 genes that are shared dependencies across the entire collection (pan-lethals). While RNAi knockdown of about 30% of these genes is also pan-lethal, approximately 50% have selective dependency patterns across cell lines, suggesting they could still be cancer vulnerabilities. The accuracy of the unique RNAi selectivity is supported by associations to multi-omics profiles, drug sensitivity, and other expected co-dependencies. Conclusions Incorporating RNAi data for genes that are pan-lethal knockouts facilitates the discovery of a wider range of gene targets than could be detected using the CRISPR dataset alone. This can aid in the interpretation of contrasting results obtained from CRISPR and RNAi screens and reinforce the importance of partial gene suppression methods in building a cancer dependency map.
    Type of Medium: Online Resource
    ISSN: 1474-760X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2040529-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 1950-1950
    Abstract: Systematic identification of signaling pathways required for the viability of cancer cells will facilitate the development of novel cancer therapies. We used gene essentiality measurements in 726 cancer cell lines to identify selective co-essentiality modules and found a functional ubiquitination cascade containing UBA6, BIRC6, KCMF1 and UBR4, which encode an E1, E2, and two heterodimeric E3 subunits, respectively, as a vulnerability in a subset of epithelial tumors. Suppressing BIRC6 in cancer cell lines that are dependent on this ubiquitination cascade led to a strong reduction in cell fitness in vitro, and to potent tumor regression and metastasis suppression in vivo. Mechanistically, BIRC6 suppression resulted in selective and robust activation of the integrated stress response (ISR) signaling via upregulation of the heme-regulated inhibitor (HRI). Using proteomic profiling, we found that HRI itself is a key degradation target of the UBA6/BIRC6/KCMF1/UBR4 cascade. These observations demonstrate a protein ubiquitination cascade regulating ISR and highlight the potential of this cascade as a novel therapeutic target for a subset of epithelial cancers. Citation Format: Lisa D. Cervia, Tsukasa Shibue, Benjamin Gaeta, Ashir Borah, Lisa Leung, Naomi Li, Nancy Dumont, Alfredo Gonzalez, Nolan Bick, Mariya Kazachkova, Joshua Dempster, John M. Krill-Burger, Namrata Udeshi, Meagan Olive, Steven A. Carr, David E. Root, Federica Piccioni, James M. McFarland, Francisca Vazquez, William C. Hahn. A ubiquitination cascade regulates the integrated stress response and epithelial cancer survival [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1950.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...