GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 15, No. 10 ( 2022-10), p. 770-773
    Abstract: Unlike bromine, the effect of iodine chemistry on the Arctic surface ozone budget is poorly constrained. We present ship-based measurements of halogen oxides in the high Arctic boundary layer from the sunlit period of March to October 2020 and show that iodine enhances springtime tropospheric ozone depletion. We find that chemical reactions between iodine and ozone are the second highest contributor to ozone loss over the study period, after ozone photolysis-initiated loss and ahead of bromine.
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Atmospheric Measurement Techniques Vol. 12, No. 5 ( 2019-05-28), p. 2913-2932
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 5 ( 2019-05-28), p. 2913-2932
    Abstract: Abstract. For more than 2 decades, satellite observations from instruments such as GOME, SCIAMACHY, GOME-2, and OMI have been used for the monitoring of bromine monoxide (BrO) distributions on global and regional scales. In October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) was launched on board the Copernicus Sentinel-5 Precursor platform with the goal of continuous daily global trace gas observations with unprecedented spatial resolution. In this study, sensitivity tests were performed to find an optimal wavelength range for TROPOMI BrO retrievals under various measurement conditions. From these sensitivity tests, a wavelength range for TROPOMI BrO retrievals was determined and global data for April 2018 as well as for several case studies were retrieved. Comparison with GOME-2 and OMI BrO retrievals shows good consistency and low scatter of the columns. The examples of individual TROPOMI overpasses show that due to the better signal-to-noise ratio and finer spatial resolution of 3.5×7 km2, TROPOMI BrO retrievals provide good data quality with low fitting errors and unique information on small-scale variabilities in various BrO source regions such as Arctic sea ice, salt marshes, and volcanoes.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 20 ( 2020-10-22), p. 11869-11892
    Abstract: Abstract. Every polar spring, phenomena called bromine explosions occur over sea ice. These bromine explosions comprise photochemical heterogeneous chain reactions that release bromine molecules, Br2, to the troposphere and lead to tropospheric plumes of bromine monoxide, BrO. This autocatalytic mechanism depletes ozone, O3, in the boundary layer and troposphere and thereby changes the oxidizing capacity of the atmosphere. The phenomenon also leads to accelerated deposition of metals (e.g., Hg). In this study, we present a 22-year (1996 to 2017) consolidated and consistent tropospheric BrO dataset north of 70∘ N, derived from four different ultraviolet–visible (UV–VIS) satellite instruments (GOME, SCIAMACHY, GOME-2A and GOME-2B). The retrieval data products from the different sensors are compared during periods of overlap and show good agreement (correlations of 0.82–0.98 between the sensors). From our merged time series of tropospheric BrO vertical column densities (VCDs), we infer changes in the bromine explosions and thus an increase in the extent and magnitude of tropospheric BrO plumes during the period of Arctic warming. We determined an increasing trend of about 1.5 % of the tropospheric BrO VCDs per year during polar springs, while the size of the areas where enhanced tropospheric BrO VCDs can be found has increased about 896 km2 yr−1. We infer from comparisons and correlations with sea ice age data that the reported changes in the extent and magnitude of tropospheric BrO VCDs are moderately related to the increase in first-year ice extent in the Arctic north of 70∘ N, both temporally and spatially, with a correlation coefficient of 0.32. However, the BrO plumes and thus bromine explosions show significant variability, which also depends, apart from sea ice, on meteorological conditions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 9, No. 9 ( 2016-09-06), p. 3071-3091
    Abstract: Abstract. We present a model description and benchmark evaluation of an extension of the tropospheric chemistry module in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) with stratospheric chemistry, referred to as C-IFS-CB05-BASCOE (for brevity here referred to as C-IFS-TS). The stratospheric chemistry originates from the one used in the Belgian Assimilation System for Chemical ObsErvations (BASCOE), and is here combined with the modified CB05 chemistry module for the troposphere as currently used operationally in the Copernicus Atmosphere Monitoring Service (CAMS). In our approach either the tropospheric or stratospheric chemistry module is applied, depending on the altitude of each individual grid box with respect to the tropopause. An evaluation of a 2.5-year long C-IFS-TS simulation with respect to various satellite retrieval products and in situ observations indicates good performance of the system in terms of stratospheric ozone, and a general improvement in terms of stratospheric composition compared to the C-IFS predecessor model version. Possible issues with transport processes in the stratosphere are identified. This marks a key step towards a chemistry module within IFS that encompasses both tropospheric and stratospheric composition, and could expand the CAMS analysis and forecast capabilities in the near future.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 5 ( 2020-03-06), p. 2795-2823
    Abstract: Abstract. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) tropospheric NO2 column retrievals from four European measurement stations are compared to simulations from five regional air quality models which contribute to the European regional ensemble forecasts and reanalyses of the operational Copernicus Atmosphere Monitoring Service (CAMS). Compared to other observational data usually applied for regional model evaluation, MAX-DOAS data are closer to the regional model data in terms of horizontal and vertical resolution, and multiple measurements are available during daylight, so that, for example, diurnal cycles of trace gases can be investigated. In general, there is good agreement between simulated and retrieved NO2 column values for individual MAX-DOAS measurements with correlations between 35 % and 70 % for individual models and 45 % to 75 % for the ensemble median for tropospheric NO2 vertical column densities (VCDs), indicating that emissions, transport and tropospheric chemistry of NOx are on average well simulated. However, large differences are found for individual pollution plumes observed by MAX-DOAS. Most of the models overestimate seasonal cycles for the majority of MAX-DOAS sites investigated. At the urban stations, weekly cycles are reproduced well, but the decrease towards the weekend is underestimated and diurnal cycles are overall not well represented. In particular, simulated morning rush hour peaks are not confirmed by MAX-DOAS retrievals, and models fail to reproduce observed changes in diurnal cycles for weekdays versus weekends. The results of this study show that future model development needs to concentrate on improving representation of diurnal cycles and associated temporal scalings.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Elem Sci Anth, University of California Press, Vol. 11, No. 1 ( 2023-05-11)
    Abstract: Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated into the Arctic food web. Depletion of both mercury and ozone occur due to the presence of reactive halogen radicals that are released from snow, ice, and aerosols. In this work, we added a detailed description of the Arctic atmospheric mercury cycle to our recently published version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem 4.3.3) that includes Arctic bromine and chlorine chemistry and activation/recycling on snow and aerosols. The major advantage of our modelling approach is the online calculation of bromine concentrations and emission/recycling that is required to simulate the hourly and daily variability of Arctic mercury depletion. We used this model to study coupling between reactive cycling of mercury, ozone, and bromine during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) spring season in 2020 and evaluated results compared to land-based, ship-based, and remote sensing observations. The model predicts that elemental mercury oxidation is driven largely by bromine chemistry and that particulate mercury is the major form of oxidized mercury. The model predicts that the majority (74%) of oxidized mercury deposited to land-based snow is re-emitted to the atmosphere as gaseous elemental mercury, while a minor fraction (4%) of oxidized mercury that is deposited to sea ice is re-emitted during spring. Our work demonstrates that hourly differences in bromine/ozone chemistry in the atmosphere must be considered to capture the springtime Arctic mercury cycle, including its integration into the cryosphere and ocean.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2023
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2011
    In:  Quarterly Journal of the Royal Meteorological Society Vol. 137, No. 660 ( 2011-10), p. 1773-1789
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 137, No. 660 ( 2011-10), p. 1773-1789
    Abstract: We present a numerical study of a polar low which hit western Iceland in January 2007, with heavy snowfall and mean wind speeds exceeding 20 m s −1 in several locations. The operational models at the time captured the polar low formation rather well, but there was a large spread in their predictions of the subsequent evolution and track of the polar low. The objective of this study is to investigate possible orographic forcing from Greenland as a trigger for the polar low development. In addition to an analysis of surface observations and satellite imagery, sensitivity studies using HIRLAM were carried out with various degradations of Greenland's orography, as well as with modifications to the sea‐surface temperature (SST), surface roughness and the data assimilation scheme. Despite the presence of an upper‐level trough and weak static stability in all the simulations, the polar low development was found to be very sensitive to the presence of the high mountains of eastern Greenland. Whereas the control run captured well the main features of the polar low, simulations with parts of east Greenland's orography removed gave a southward‐displaced polar low which moved rapidly eastward, resulting in substantially underestimated near‐surface winds and snowfall amounts. Setting the orographic heights over all of Greenland to zero led to the complete disappearance of the polar low. On the other hand, artificially increasing the SST by 4 K in the Denmark Strait, reducing the orographic roughness or replacing the four‐dimensional variational assimilation scheme (4D‐Var) by 3D‐Var had only a small effect on the polar low. We suggest that hitherto unreported interactions between the high mountains of east Greenland and polar low development over the Denmark Strait may be more important for polar low formation than katabatic flow from valleys in east Greenland that was highlighted in earlier studies. Copyright © 2011 Royal Meteorological Society
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Atmospheric Chemistry and Physics Vol. 20, No. 20 ( 2020-10-29), p. 12285-12312
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 20 ( 2020-10-29), p. 12285-12312
    Abstract: Abstract. Satellite observations have shown large areas of elevated bromine monoxide (BrO) covering several thousand square kilometres over the Arctic and Antarctic sea ice regions in polar spring. These enhancements of total BrO columns result from increases in stratospheric or tropospheric bromine amounts or both, and their occurrence may be related to local meteorological conditions. In this study, the spatial distribution of the occurrence of total BrO column enhancements and the associated changes in meteorological parameters are investigated in both the Arctic and Antarctic regions using 10 years of Global Ozone Monitoring Experiment-2 (GOME-2) measurements and meteorological model data. Statistical analysis of the data presents clear differences in the meteorological conditions between the 10-year mean and episodes of enhanced total BrO columns in both polar sea ice regions. These differences show pronounced spatial patterns. In general, atmospheric low pressure, cold surface air temperature, high surface-level wind speed, and low tropopause heights were found during periods of enhanced total BrO columns. In addition, spatial patterns of prevailing wind directions related to the BrO enhancements are identified in both the Arctic and Antarctic sea ice regions. The relevance of the different meteorological parameters on the total BrO column is evaluated based on a Spearman rank correlation analysis, finding that tropopause height and surface air temperature have the largest correlations with the total BrO vertical column density. Our results demonstrate that specific meteorological parameters can have a major impact on the BrO enhancement in some areas, but in general, multiple meteorological parameters interact with each other in their influence on BrO columns.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 9 ( 2022-05-05), p. 5877-5924
    Abstract: Abstract. Megacities and other major population centres (MPCs) worldwide are major sources of air pollution, both locally as well as downwind. The overall assessment and prediction of the impact of MPC pollution on tropospheric chemistry are challenging. The present work provides an overview of the highlights of a major new contribution to the understanding of this issue based on the data and analysis of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) international project. EMeRGe focuses on atmospheric chemistry, dynamics, and transport of local and regional pollution originating in MPCs. Airborne measurements, taking advantage of the long range capabilities of the High Altitude and LOng Range Research Aircraft (HALO, https://www.halo-spp.de, last access: 22 March 2022), are a central part of the project. The synergistic use and consistent interpretation of observational data sets of different spatial and temporal resolution (e.g. from ground-based networks, airborne campaigns, and satellite measurements) supported by modelling within EMeRGe provide unique insight to test the current understanding of MPC pollution outflows. In order to obtain an adequate set of measurements at different spatial scales, two field experiments were positioned in time and space to contrast situations when the photochemical transformation of plumes emerging from MPCs is large. These experiments were conducted in summer 2017 over Europe and in the inter-monsoon period over Asia in spring 2018. The intensive observational periods (IOPs) involved HALO airborne measurements of ozone and its precursors, volatile organic compounds, aerosol particles, and related species as well as coordinated ground-based ancillary observations at different sites. Perfluorocarbon (PFC) tracer releases and model forecasts supported the flight planning, the identification of pollution plumes, and the analysis of chemical transformations during transport. This paper describes the experimental deployment and scientific questions of the IOP in Europe. The MPC targets – London (United Kingdom; UK), the Benelux/Ruhr area (Belgium, the Netherlands, Luxembourg and Germany), Paris (France), Rome and the Po Valley (Italy), and Madrid and Barcelona (Spain) – were investigated during seven HALO research flights with an aircraft base in Germany for a total of 53 flight hours. An in-flight comparison of HALO with the collaborating UK-airborne platform Facility for Airborne Atmospheric Measurements (FAAM) took place to assure accuracy and comparability of the instrumentation on board. Overall, EMeRGe unites measurements of near- and far-field emissions and hence deals with complex air masses of local and distant sources. Regional transport of several European MPC outflows was successfully identified and measured. Chemical processing of the MPC emissions was inferred from airborne observations of primary and secondary pollutants and the ratios between species having different chemical lifetimes. Photochemical processing of aerosol and secondary formation or organic acids was evident during the transport of MPC plumes. Urban plumes mix efficiently with natural sources as mineral dust and with biomass burning emissions from vegetation and forest fires. This confirms the importance of wildland fire emissions in Europe and indicates an important but discontinuous contribution to the European emission budget that might be of relevance in the design of efficient mitigation strategies. The present work provides an overview of the most salient results in the European context, with these being addressed in more detail within additional dedicated EMeRGe studies. The deployment and results obtained in Asia will be the subject of separate publications.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 17 ( 2023-09-04), p. 9787-9814
    Abstract: Abstract. During polar spring, ozone depletion events (ODEs) are often observed in combination with bromine explosion events (BEEs) in Ny-Ålesund. In this study, two long-term ozone data sets (2010–2021) from ozonesonde launches and in situ ozone measurements have been evaluated between March and May of each year to study ODEs in Ny-Ålesund. Ozone concentrations below 15 ppb were marked as ODEs. We applied a composite analysis to evaluate tropospheric BrO retrieved from satellite data and the prevailing meteorological conditions during these events. During ODEs, both data sets show a blocking situation with a low-pressure anomaly over the Barents Sea and anomalously high pressure in the Icelandic Low area, leading to transport of cold polar air from the north to Ny-Ålesund with negative temperature and positive BrO anomalies found around Svalbard. In addition, a higher wind speed and a higher, less stable boundary layer are noticed, supporting the assumption that ODEs often occur in combination with polar cyclones. Applying a 20 ppb ozone threshold value to tag ODEs resulted in only a slight attenuation of the BrO and meteorological anomalies compared to the 15 ppb threshold. Monthly analysis showed that BrO and meteorological anomalies are weakening from March to May. Therefore, ODEs associated with low-pressure systems, high wind speeds, and blowing snow more likely occur in early spring, while ODEs associated with low wind speed and stable boundary layer meteorological conditions seem to occur more often in late spring. Annual evaluations showed similar weather patterns for several years, matching the overall result of the composite analysis. However, some years show different meteorological patterns deviating from the results of the mean analysis. Finally, an ODE case study from the beginning of April 2020 in Ny-Ålesund is presented, where ozone was depleted for 2 consecutive days in combination with increased BrO values. The meteorological conditions are representative of the results of the composite analysis. A low-pressure system arrived from the northeast to Svalbard, resulting in high wind speeds with blowing snow and transport of cold polar air from the north.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...