GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hydrological Processes, Wiley, Vol. 30, No. 17 ( 2016-08-15), p. 3097-3104
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Natural Hazards and Earth System Sciences Vol. 20, No. 6 ( 2020-06-04), p. 1595-1608
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 20, No. 6 ( 2020-06-04), p. 1595-1608
    Abstract: Abstract. Forecasting of drought impacts is still lacking in drought early-warning systems (DEWSs), which presently do not go beyond hazard forecasting. Therefore, we developed drought impact functions using machine learning approaches (logistic regression and random forest) to predict drought impacts with lead times up to 7 months ahead. The observed and forecasted hydrometeorological drought hazards – such as the standardized precipitation index (SPI), standardized precipitation evaporation index (SPEI), and standardized runoff index (SRI) – were obtained from the The EU-funded Enhancing Emergency Management and Response to Extreme Weather and Climate Events (ANYWHERE) DEWS. Reported drought impact data, taken from the European Drought Impact Report Inventory (EDII), were used to develop and validate drought impact functions. The skill of the drought impact functions in forecasting drought impacts was evaluated using the Brier skill score and relative operating characteristic metrics for five cases representing different spatial aggregation and lumping of impacted sectors. Results show that hydrological drought hazard represented by SRI has higher skill than meteorological drought represented by SPI and SPEI. For German regions, impact functions developed using random forests indicate a higher discriminative ability to forecast drought impacts than logistic regression. Moreover, skill is higher for cases with higher spatial resolution and less lumped impacted sectors (cases 4 and 5), with considerable skill up to 3–4 months ahead. The forecasting skill of drought impacts using machine learning greatly depends on the availability of impact data. This study demonstrates that the drought impact functions could not be developed for certain regions and impacted sectors, owing to the lack of reported impacts.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 22, No. 6 ( 2022-06-29), p. 2201-2217
    Abstract: Abstract. Drought events and their impacts vary spatially and temporally due to diverse pedo-climatic and hydrologic conditions, as well as variations in exposure and vulnerability, such as demographics and response actions. While hazard severity and frequency of past drought events have been studied in detail, little is known about the effect of drought management strategies on the actual impacts and how the hazard is perceived by relevant stakeholders. In a continental study, we characterised and assessed the impacts and the perceptions of two recent drought events (2018 and 2019) in Europe and examined the relationship between management strategies and drought perception, hazard, and impact. The study was based on a pan-European survey involving national representatives from 28 countries and relevant stakeholders responding to a standard questionnaire. The survey focused on collecting information on stakeholders' perceptions of drought, impacts on water resources and beyond, water availability, and current drought management strategies on national and regional scales. The survey results were compared with the actual drought hazard information registered by the European Drought Observatory (EDO) for 2018 and 2019. The results highlighted high diversity in drought perception across different countries and in values of the implemented drought management strategies to alleviate impacts by increasing national and sub-national awareness and resilience. The study identifies an urgent need to further reduce drought impacts by constructing and implementing a European macro-level drought governance approach, such as a directive, which would strengthen national drought management and mitigate damage to human and natural assets.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Natural Hazards and Earth System Sciences Vol. 22, No. 6 ( 2022-06-23), p. 2099-2116
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 22, No. 6 ( 2022-06-23), p. 2099-2116
    Abstract: Abstract. Droughts often have a severe impact on the environment, society, and the economy. The variables and scales that are relevant to understand the impact of drought motivated this study, which compared hazard and propagation characteristics, as well as impacts, of major droughts between 1990 and 2019 in southwestern Germany. We bring together high-resolution datasets of air temperature, precipitation, soil moisture simulations, and streamflow and groundwater level observations, as well as text-based information on drought impacts. Various drought characteristics were derived from the hydrometeorological and drought impact time series and compared across variables and spatial scales. Results revealed different drought types sharing similar hazard and impact characteristics. The most severe drought type identified is an intense multi-seasonal drought type peaking in summer, i.e., the events in 2003, 2015, and 2018. This drought type appeared in all domains of the hydrological cycle and coincided with high air temperatures, causing a high number of and variability in drought impacts. The regional average drought signals of this drought type exhibit typical drought propagation characteristics such as a time lag between meteorological and hydrological drought, whereas propagation characteristics of local drought signals are variable in space. This spatial variability in drought hazard increased when droughts propagated through the hydrological cycle, causing distinct differences among variables, as well as regional average and local drought information. Accordingly, single variable or regional average drought information is not sufficient to fully explain the variety of drought impacts that occurred, supporting the conclusion that in regions as diverse as the case study presented here, large-scale drought monitoring needs to be complemented by local drought information to assess the multifaceted impact of drought.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Hydrology and Earth System Sciences Vol. 20, No. 7 ( 2016-07-12), p. 2779-2800
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 20, No. 7 ( 2016-07-12), p. 2779-2800
    Abstract: Abstract. Drought is one of the most costly natural hazards in Europe. Due to its complexity, drought risk, meant as the combination of the natural hazard and societal vulnerability, is difficult to define and challenging to detect and predict, as the impacts of drought are very diverse, covering the breadth of socioeconomic and environmental systems. Pan-European maps of drought risk could inform the elaboration of guidelines and policies to address its documented severity and impact across borders. This work tests the capability of commonly applied drought indices and vulnerability factors to predict annual drought impact occurrence for different sectors and macro regions in Europe and combines information on past drought impacts, drought indices, and vulnerability factors into estimates of drought risk at the pan-European scale. This hybrid approach bridges the gap between traditional vulnerability assessment and probabilistic impact prediction in a statistical modelling framework. Multivariable logistic regression was applied to predict the likelihood of impact occurrence on an annual basis for particular impact categories and European macro regions. The results indicate sector- and macro-region-specific sensitivities of drought indices, with the Standardized Precipitation Evapotranspiration Index (SPEI) for a 12-month accumulation period as the overall best hazard predictor. Vulnerability factors have only limited ability to predict drought impacts as single predictors, with information about land use and water resources being the best vulnerability-based predictors. The application of the hybrid approach revealed strong regional and sector-specific differences in drought risk across Europe. The majority of the best predictor combinations rely on a combination of SPEI for shorter and longer accumulation periods, and a combination of information on land use and water resources. The added value of integrating regional vulnerability information with drought risk prediction could be proven. Thus, the study contributes to the overall understanding of drivers of drought impacts, appropriateness of drought indices selection for specific applications, and drought risk assessment.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Regional Environmental Change Vol. 19, No. 8 ( 2019-12), p. 2311-2323
    In: Regional Environmental Change, Springer Science and Business Media LLC, Vol. 19, No. 8 ( 2019-12), p. 2311-2323
    Type of Medium: Online Resource
    ISSN: 1436-3798 , 1436-378X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1480672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Earth-Science Reviews Vol. 210 ( 2020-11), p. 103345-
    In: Earth-Science Reviews, Elsevier BV, Vol. 210 ( 2020-11), p. 103345-
    Type of Medium: Online Resource
    ISSN: 0012-8252
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1792-9
    detail.hit.zdb_id: 2012642-6
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Geosciences, MDPI AG, Vol. 9, No. 1 ( 2019-01-12), p. 39-
    Abstract: During the last 20 years, Argentina experienced several extreme and widespread droughts in many different regions, including the core cropland areas. The most devastating recent events were recorded in the years 2006, 2009 and 2011. Reported impacts of the main events induced losses of more than 4 billion U.S. dollars and more than 1 million persons were reported to be directly or indirectly affected. In this paper, we analyse the drought risk in Argentina, taking into account recent information on drought hazard, exposure and vulnerability. Accordingly, we identified the most severe droughts in Argentina during the 2000–2015 period using a combination of drought hazard indicators and exposure layers. Three main events were identified: (1) during spring 2006 droughts peaked in the northeast of Argentina, (2) in 2009 precipitation deficits indicated a drought epicenter in the central Argentinian plains, and (3) in 2011 the northern Patagonia region experienced a combination of natural disasters due to severe drought conditions and a devastating volcanic eruption. Furthermore, we analysed the dynamics of drought exposure for the population and the main economic sectors affected by municipality, i.e., agriculture and livestock production. Assets exposed to droughts have been identified with several records of drought impacts and declarations of farming emergencies. We show that by combining exposure and vulnerability with drought intensity it is feasible to detect the likelihood of regional impacts in different sectors.
    Type of Medium: Online Resource
    ISSN: 2076-3263
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2655946-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Natural Hazards Vol. 80, No. 2 ( 2016-1), p. 951-973
    In: Natural Hazards, Springer Science and Business Media LLC, Vol. 80, No. 2 ( 2016-1), p. 951-973
    Type of Medium: Online Resource
    ISSN: 0921-030X , 1573-0840
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2017806-2
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Communications Vol. 10, No. 1 ( 2019-10-30)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2019-10-30)
    Abstract: Present-day drought early warning systems provide the end-users information on the ongoing and forecasted drought hazard (e.g. river flow deficit). However, information on the forecasted drought impacts, which is a prerequisite for drought management, is still missing. Here we present the first study assessing the feasibility of forecasting drought impacts, using machine-learning to relate forecasted hydro-meteorological drought indices to reported drought impacts. Results show that models, which were built with more than 50 months of reported drought impacts, are able to forecast drought impacts a few months ahead. This study highlights the importance of drought impact databases for developing drought impact functions. Our findings recommend that institutions that provide operational drought early warnings should not only forecast drought hazard, but also impacts after developing an impact database.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...