GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Evolution, Wiley, ( 2012-12), p. no-no
    Type of Medium: Online Resource
    ISSN: 0014-3820
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 2036375-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Biogeography, Wiley, Vol. 48, No. 10 ( 2021-10), p. 2616-2628
    Abstract: Accounting for geo‐environmental dynamics is crucial to understand community assembly across islands. Whittaker et al. ( J Biogeogr , 35:977–994, 2008)’s General Dynamic Model (GDM) aims towards this goal. Yet, it does not explicitly consider that most islands belong to archipelagos. We examined how island biodiversity dynamics are influenced by the interaction of eco‐evolutionary processes acting at the archipelago level with each island's geo‐environmental dynamics. Location Hypothetical archipelagos. Taxon Any. Methods We used an individual‐based model, ecologically neutral within the archipelago. Several islands emerge in succession with a typical volcanic ontogeny. We considered both mainland and inter‐island dispersal. Geographically isolated lineages diverged over time, possibly speciating. Results We found diversity to be at dynamic equilibrium. In an archipelago, islands hosted more diversity and more endemic species, at both island and archipelago levels, than an equivalently‐sized single isolated island. This was due to an ‘archipelago effect’: inter‐island dispersal increased within‐island diversity through species occurrence on multiple islands; species may undergo anagenetic changes on the colonised islands, eventually speciating, thereby increasing archipelago diversity. Biodiversity dynamics of different islands may differ even on islands with identical geo‐environmental dynamics because the archipelago effect varied over time and affected each island differently (‘history effect’). By accounting for these effects, we predicted detectable deviations from the GDM predictions, which are largest for remote archipelagos, with islands located close together and with an intermediate time of island emergence. In linear stepping‐stone archipelagos, we predicted higher diversity on centrally located islands. Main conclusions Our results demonstrate that analyses of insular biodiversity data would greatly benefit from explicitly accounting for both archipelago and history effects. We suggest incorporating variables characterising the spatio‐temporal structure of the whole archipelago. We discuss possible difficulties in distinguishing between the archipelago effect and equilibrium diversity dynamics.
    Type of Medium: Online Resource
    ISSN: 0305-0270 , 1365-2699
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020428-0
    detail.hit.zdb_id: 188963-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 39 ( 2016-09-27)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 39 ( 2016-09-27)
    Abstract: Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    University of Chicago Press ; 2008
    In:  The American Naturalist Vol. 172, No. 2 ( 2008-08), p. 259-271
    In: The American Naturalist, University of Chicago Press, Vol. 172, No. 2 ( 2008-08), p. 259-271
    Type of Medium: Online Resource
    ISSN: 0003-0147 , 1537-5323
    RVK:
    Language: English
    Publisher: University of Chicago Press
    Publication Date: 2008
    detail.hit.zdb_id: 1473832-6
    detail.hit.zdb_id: 207092-3
    detail.hit.zdb_id: 2669910-2
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Nature Communications Vol. 9, No. 1 ( 2018-08-01)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2018-08-01)
    Abstract: How ecological interactions, genetic processes, and environmental variability jointly shape the evolution of species diversity remains a challenging problem in biology. We developed an individual-based model of clade diversification to predict macroevolutionary dynamics when resource competition, genetic differentiation, and landscape fluctuations interact. Diversification begins with a phase of geographic adaptive radiation. Extinction rates rise sharply at the onset of the next phase. In this phase of niche self-structuring, speciation and extinction processes, albeit driven by biotic mechanisms (competition and hybridization), have essentially constant rates, determined primarily by the abiotic pace of landscape dynamics. The final phase of diversification begins when intense competition prevents dispersing individuals from establishing new populations. Species’ ranges shrink, causing negative diversity-dependence of speciation rates. These results show how ecological and microevolutionary processes shape macroevolutionary dynamics and rates; they caution against the notion of ecological limits to diversity, and suggest new directions for the phylogenetic analysis of diversification.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Oikos Vol. 128, No. 2 ( 2019-01), p. 221-234
    In: Oikos, Wiley, Vol. 128, No. 2 ( 2019-01), p. 221-234
    Abstract: Species may survive under contemporary climate change by either shifting their range or adapting locally to the warmer conditions. Theoretical and empirical studies recently underlined that dispersal, the central mechanism behind these responses, may depend on the match between an individuals’ phenotype and local environment. Such matching habitat choice is expected to induce an adaptive gene flow, but it now remains to be studied whether this local process could promote species’ responses to climate change. Here, we investigate this by developing an individual‐based model including either random dispersal or temperature‐dependent matching habitat choice. We monitored population composition and distribution through space and time under climate change. Relative to random dispersal, matching habitat choice induced an adaptive gene flow that lessened spatial range loss during climate warming by improving populations’ viability within the range (i.e. limiting range fragmentation) and by facilitating colonization of new habitats at the cold margin. The model even predicted range contraction under random dispersal but range expansion under optimal matching habitat choice. These benefits of matching habitat choice for population persistence mostly resulted from adaptive immigration decision and were greater for populations with larger dispersal distance and higher emigration probability. We also found that environmental stochasticity resulted in suboptimal matching habitat choice, decreasing the benefits of this dispersal mode under climate change. However population persistence was still better under suboptimal matching habitat choice than under random dispersal. Our results highlight the urgent need to implement more realistic mechanisms of dispersal such as matching habitat choice into models predicting the impacts of ongoing climate change on biodiversity.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ecology Letters, Wiley, Vol. 18, No. 2 ( 2015-02), p. 200-217
    Abstract: The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, ‘An equilibrium theory of insular zoogeography’, was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re‐assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution – understanding ecosystem functioning, speciation and diversification – frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island‐based theory is continually being enriched, incorporating non‐equilibrium dynamics is identified as a major challenge for the future.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2015
    In:  Journal of Theoretical Biology Vol. 370 ( 2015-04), p. 184-196
    In: Journal of Theoretical Biology, Elsevier BV, Vol. 370 ( 2015-04), p. 184-196
    Type of Medium: Online Resource
    ISSN: 0022-5193
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1470953-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Evolution, Wiley, Vol. 67, No. 3 ( 2013-03), p. 792-805
    Type of Medium: Online Resource
    ISSN: 0014-3820
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 2036375-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Biology, MDPI AG, Vol. 11, No. 8 ( 2022-08-07), p. 1185-
    Abstract: The modern era of analytical and quantitative palaeobiology has only just begun, integrating methods such as morphological and molecular phylogenetics and divergence time estimation, as well as phenotypic and molecular rates of evolution. Calibrating the tree of life to geological time is at the nexus of many disparate disciplines, from palaeontology to molecular systematics and from geochronology to comparative genomics. Creating an evolutionary time scale of the major events that shaped biodiversity is key to all of these fields and draws from each of them. Different methodological approaches and data employed in various disciplines have traditionally made collaborative research efforts difficult among these disciplines. However, the development of new methods is bridging the historical gap between fields, providing a holistic perspective on organismal evolutionary history, integrating all of the available evidence from living and fossil species. Because phylogenies with only extant taxa do not contain enough information to either calibrate the tree of life or fully infer macroevolutionary dynamics, phylogenies should preferably include both extant and extinct taxa, which can only be achieved through the inclusion of phenotypic data. This integrative phylogenetic approach provides ample and novel opportunities for evolutionary biologists to benefit from palaeontological data to help establish an evolutionary time scale and to test core macroevolutionary hypotheses about the drivers of biological diversification across various dimensions of organisms.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661517-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...