GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Remote Sensing, MDPI AG, Vol. 14, No. 13 ( 2022-07-01), p. 3172-
    Abstract: Canopy height is a fundamental parameter for determining forest ecosystem functions such as biodiversity and above-ground biomass. Previous studies examining the underlying patterns of the complex relationship between canopy height and its environmental and climatic determinants suffered from the scarcity of accurate canopy height measurements at large scales. NASA’s mission, the Global Ecosystem Dynamic Investigation (GEDI), has provided sampled observations of the forest vertical structure at near global scale since late 2018. The availability of such unprecedented measurements allows for examining the vertical structure of vegetation spatially and temporally. Herein, we explore the most influential climatic and environmental drivers of the canopy height in tropical forests. We examined different resampling resolutions of GEDI-based canopy height to approximate maximum canopy height over tropical forests across all of Malaysia. Moreover, we attempted to interpret the dynamics underlining the bivariate and multivariate relationships between canopy height and its climatic and topographic predictors including world climate data and topographic data. The approaches to analyzing these interactions included machine learning algorithms, namely, generalized linear regression, random forest and extreme gradient boosting with tree and Dart implementations. Water availability, represented as the difference between precipitation and potential evapotranspiration, annual mean temperature and elevation gradients were found to be the most influential determinants of canopy height in Malaysia’s tropical forest landscape. The patterns observed are in line with the reported global patterns and support the hydraulic limitation hypothesis and the previously reported negative trend for excessive water supply. Nevertheless, different breaking points for excessive water supply and elevation were identified in this study, and the canopy height relationship with water availability observed to be less significant for the mountainous forest on altitudes higher than 1000 m. This study provides insights into the influential factors of tree height and helps with better comprehending the variation in canopy height in tropical forests based on GEDI measurements, thereby supporting the development and interpretation of ecosystem modeling, forest management practices and monitoring forest response to climatic changes in montane forests.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Land, MDPI AG, Vol. 9, No. 9 ( 2020-08-20), p. 282-
    Abstract: Papua New Guinea is a country in Oceania that hosts unique rain forests and forest ecosystems which are crucial for sequestering atmospheric carbon, conserving biodiversity, supporting the livelihood of indigenous people, and underpinning the timber market of the country. As a result of urban sprawl, agricultural expansion, and illegal logging, there has been a tremendous increase in land-use land cover (LULC) change happening in the country in the past few decades and this has triggered massive deforestation and forest degradation. However, only a few studies have ventured into quantifying the long-term trends and their associated spatial patterns—and have often presented contrasting responses. Herein, we intended to assess the extent of deforestation and the rate of urbanization that happened in the past 33 years (1987–2020) in the Bumbu river basin in Papua New Guinea using satellite imagery—for the years 1987, 2002, 2010, and 2020—and Geographic Information System (GIS) tools. On performing image classification, land use maps were developed and later compared with Google Earth’s high-resolution satellite images for accuracy assessment purposes. For probing into the spatial aspects of the land-use change issues, the study area was divided into four urban zones and four forest zones according to the four main cardinal directions centered in the urban and forest area centers of the 1987 image; subsequently, the rate of urban area expansion in each urban zone was separately calculated. From our preliminary analysis and literature survey, we observed several hurdles regarding the classification of regenerative forests and mixed pixels and gaps in LULC studies that have happened in Papua New Guinea to date. Through this communication paper, we aim to disseminate our preliminary results, which highlight a rapid increase in urban extent from 14.39 km2 in 1987 to 23.06 km2 in 2020 accompanied by a considerable decrease in forest extent from 76.29 km2 in 1987 to 59.43 km2 in 2020; this observation favors the presumption that urban and agricultural land expansion is happening at the cost of forest cover. Moreover, strategies for addressing technical issues and for integrating land-use change with various socioeconomic and environmental variables are presented soliciting feedback.
    Type of Medium: Online Resource
    ISSN: 2073-445X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2682955-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Environmental Management, Elsevier BV, Vol. 287 ( 2021-06), p. 112277-
    Type of Medium: Online Resource
    ISSN: 0301-4797
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1469206-5
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 15, No. 4 ( 2023-02-12), p. 1016-
    Abstract: Harvested timber and constructed infrastructure over the logging area leave massive damage that contributes to the emission of anthropogenic gases into the atmosphere. Carbon emissions from tropical deforestation and forest degradation are the second largest source of anthropogenic emissions of greenhouse gases. Even though the emissions vary from region to region, a significant amount of carbon emissions comes mostly from timber harvesting, which is tightly linked to the selective logging intensity. This study intended to utilize a remote sensing approach to quantify carbon emissions from selective logging activities in Ulu Jelai Forest Reserve, Pahang, Malaysia. To quantify the emissions, the relevant variables from the logging’s impact were identified as a predictor in the model development and were listed as stump height, stump diameter, cross-sectional area, timber volume, logging gaps, road, skid trails, and incidental damage resulting from the logging process. The predictive performance of linear regression and machine learning models, namely support vector machine (SVM), random forest, and K-nearest neighbor, were examined to assess the carbon emission from this degraded forest. To test the different methods, a combination of ground inventory plots, unmanned aerial vehicles (UAV), and satellite imagery were analyzed, and the performance in terms of root mean square error (RMSE), bias, and coefficient of correlation (R2) were calculated. Among the four models tested, the machine learning model SVM provided the best accuracy with an RMSE of 21.10% and a bias of 0.23% with an adjusted R2 of 0.80. Meanwhile, the linear model performed second with an RMSE of 22.14%, a bias of 0.72%, and an adjusted R2 of 0.75. This study demonstrates the efficacy of remotely sensed data to facilitate the conventional methods of quantifying carbon emissions from selective logging and promoting advanced assessments that are more effective, especially in massive logging areas and various forest conditions. Findings from this research will be useful in assisting the relevant authorities in optimizing logging practices to sustain forest carbon sequestration for climate change mitigation.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...