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Abstract: Canopy height is a fundamental parameter for determining forest ecosystem functions
such as biodiversity and above-ground biomass. Previous studies examining the underlying patterns
of the complex relationship between canopy height and its environmental and climatic determinants
suffered from the scarcity of accurate canopy height measurements at large scales. NASA’s mission,
the Global Ecosystem Dynamic Investigation (GEDI), has provided sampled observations of the
forest vertical structure at near global scale since late 2018. The availability of such unprecedented
measurements allows for examining the vertical structure of vegetation spatially and temporally.
Herein, we explore the most influential climatic and environmental drivers of the canopy height
in tropical forests. We examined different resampling resolutions of GEDI-based canopy height
to approximate maximum canopy height over tropical forests across all of Malaysia. Moreover,
we attempted to interpret the dynamics underlining the bivariate and multivariate relationships
between canopy height and its climatic and topographic predictors including world climate data
and topographic data. The approaches to analyzing these interactions included machine learning
algorithms, namely, generalized linear regression, random forest and extreme gradient boosting with
tree and Dart implementations. Water availability, represented as the difference between precipitation
and potential evapotranspiration, annual mean temperature and elevation gradients were found to
be the most influential determinants of canopy height in Malaysia’s tropical forest landscape. The
patterns observed are in line with the reported global patterns and support the hydraulic limitation
hypothesis and the previously reported negative trend for excessive water supply. Nevertheless,
different breaking points for excessive water supply and elevation were identified in this study,
and the canopy height relationship with water availability observed to be less significant for the
mountainous forest on altitudes higher than 1000 m. This study provides insights into the influential
factors of tree height and helps with better comprehending the variation in canopy height in tropical
forests based on GEDI measurements, thereby supporting the development and interpretation of
ecosystem modeling, forest management practices and monitoring forest response to climatic changes
in montane forests.
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1. Introduction

Forest canopy height plays an important role in determining above-ground biomass,
forest productivity and recovery, carbon sequestration/stock estimation, biodiversity, forest
resilience to disturbances, climate extremities (e.g., drought) and related tree mortality [1-6].
Thus, for the better comprehension of forest ecosystem dynamics, especially in contempo-
rary global environmental circumstances and changing climate scenarios, it is paramount
to consider and comprehend canopy height and its variations to help in formulating and
evaluating forest management policies [7]. Subsequently, it becomes necessary to un-
derstand the drivers influencing canopy height and its spatial variation along with the
relationships among them. Among the several factors that influence canopy height, var-
ious studies have found the hydraulic limitation hypothesis (water availability) and the
energy limitation hypothesis (energy in the form of solar radiation or temperature) to be
pivotal [6,8-11]. At large spatial scales, climatic attributes along with historical conditions
have been found to mediate canopy height, whereas at fine scale, it is the site-specific
parameters such as topographical variables (elevation, slope, curvature, aspect), soil pa-
rameters and local environmental conditions which drive canopy height [12-15]. These
parameters may in turn aggregate with other abiotic factors to influence canopy height. For
instance, topography may influence solar radiation, wind disturbance and direction and
soil erosion and development, thus impacting soil water retention, evapotranspiration and
water deficit [16-18].

With advances in technology, remotely sensed LiDAR (satellite and airborne) data
have been utilized to analyze canopy heights at global and local scales, with a few utilizing
LiDAR for investigating the relationship of canopy height with its environmental drivers.
Wang et al. [11] investigated the relationships between canopy height, water and energy
conditions using UAV-based LiDAR point cloud data. They found that the water limitation
hypothesis was able to better explain the variance in canopy heights in tropical forests
in China, while the same was true for the energy limitation hypothesis in temperate
forests [11]. In another study, Fricker et al. [14] made use of airborne LiDAR, often referred
to as airborne laser scanning (ALS), for studying the association between canopy height
and environmental variables (soil bulk density, pH, topographic wetness index, slope
curvature and potential solar radiation) at six different spatial scales (25, 50, 100, 250,
500, 1000 m) across an elevational gradient ranging from 200 to 3000 m above sea level
(a.s.l.) in the Sierra Nevada mountains in the USA. Their findings reveal that the influence
of environmental drivers on canopy height is scale-dependent, with tree height being
strongly associated with climatic parameters at coarse scale and topographical and soil
variables at finer spatial scales. Additionally, Rahman et al. [15] used ALS data to explore
how canopy height varies with topographical features and neighborhood conditions at
landscape level over an area of 230 km? in central Japan. At a global scale, [12,13,19] have
studied the associations between canopy height and its determinants. Through their study,
Klein et al. [19] concluded that water availability (the difference between precipitation and
potential evapotranspiration, i.e., P-PET) is a strong predictor of global canopy height by
utilizing the global canopy height map developed from the Geoscience Laser Altimeter
System (GLAS) onboard ICESat by Simard et al. [20]. They also found that the canopy
saturates at 45 m beyond the 500 mm P-PET threshold. Furthermore, Tao et al. [12] utilized
the same approach but used original data from GLAS instead of model data. They observed
that the association between canopy height and P-PET gradient was hump-shaped, which
was characterized by an initial increase, followed by saturation at 680 mm and subsequent
decline. These results were supportive of the hydraulic limitation hypothesis and indicated
the negative impact of excess water on canopy height. In another study, Zhang et al. [13]
showed that canopy height was strongly linked with actual evapotranspiration and annual
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precipitation and that regional factors play a supplementary role in determining global
canopy height in addition to current climatic conditions.

Although the aforementioned research endeavors have investigated this relationship,
regional-scale studies that focused on tropical forests, and Malaysian tropical forests in
particular, have been scarce and contingent on available datasets. Studies relying on
canopy height maps based on ALS are often limited in scale, while previous global-scale
studies using space LiDAR canopy height maps lacked regional focus and calibration
and often used modeled canopy height maps based on sparse actual measurement due
to previous dataset limitations [12,19-21]. NASA'’s late-2018 mission Global Ecosystem
Dynamic and Investigation (GEDI) provides insights into the spatial distribution of canopy
heights and three-dimensional forest structure characteristics [22]. This recent availability of
detailed information about key forest structural parameters such as canopy height provides
an opportunity to better understand the drivers and factors influencing canopy height
distribution at regional and global scales, and consequently understanding forest functions
influenced by canopy height.

Through this study, we aim to evaluate the relationships between canopy height and
its environmental drivers for Malaysia at the landscape scale, which is the first attempt
of its kind to the best of our knowledge. We also attempt to validate the hydraulic lim-
itation hypothesis using GEDI metrics. In this regard, a GEDI-ALS calibrated 1 x 1 km
canopy height grid was developed and evaluated using different aggregation methods.
Multivariate machine learning (ML) models were used to model canopy height and assess
the strength of its relationships with environmental drivers. The relationships between
canopy height and water availability, temperature, elevation, slope, aspect and topographic
curvature were evaluated independently to provide insights into canopy height variation
and the functional relationship with maximum canopy height. Finally, the multivariate
relationships between canopy height, water availability and elevation gradients were eval-
uated in an attempt to determine regional elevation breakpoints and water availability
thresholds affecting maximum canopy height.

2. Materials and Methods
2.1. Study Sites

The forest sites pertinent to our study are shown in Figure 1. These include (a) a
FRIM (Forest Research Institute Malaysia) forest site (Figure 1a), (b) Sungai Menyala For-
est Reserve, Negeri Sembilan (Figure 1b), (c) Danum Valley Conservation Area (DVCA)
(Figure 1c), and (d) the Stability of Altered Rainforest Ecosystem (SAFE) project site
(Figure 1d). The FRIM site is located in the Forest Research Institute of Malaysia’s Selangor
Forest Park (FRIM-SFP), Kepong, Selangor, Malaysia; it occupies an area of approximately
13 km?, and it is observed to include logged land forests, low land forests and hill forests.
The elevation in this site varies from 50 to 296 m a.s.l. The Sungai Menyala Forest Reserve,
Negeri Sembilan, is located at Port Dickson, Negeri Sembilan. The site is situated 5-6 km
from the sea with an average ground elevation of 20-40 m a.s.l. The terrain in this site is
flat, and the forest across this site is classified as a lowland dipterocarp-forest formation
and Red Meranti-Keruing forest type [23,24]. The DVCA is a 75 km? area of a relatively
undisturbed lowland dipterocarp forest in Lahad Datu, Sabah, Malaysia. This site contains
long-term experimental plots. The SAFE site is the subject of the Stability of Altered Forest
Ecosystem project in east Sabah state, Malaysia. The site witnessed a progressive conver-
sion from forest to palms, is characterized by high rainfall > 2000 mm/year and possesses
various topographical landscapes [25]. Further description of the DVCA and SAFE sites
and corresponding data can be found in [26-28].
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Figure 1. ALS data sites and GEDI coverage over these sites: (a) FRIM FR site, Selangor, Peninsular
Malaysia; (b) the Sungai Menyala FR site, Negeri Sembilan, Peninsular Malaysia; (c) the Danum
Valley Conservation Area, Sabah, Malaysia; (d) SAFE project site, Sabah, Malaysia.

2.2. Remote Sensing Data
2.2.1. Airborne Laser Scanning Data and Data Pre-processing

The ALS data over the two sites in the Malaysian peninsula were obtained from
FRIM as LiDAR point clouds. The corresponding ALS surveys for these two sites were
conducted in 2018 and 2016 for the FRIM and Negeri Sembilan sites respectively by FRIM
at 600~1000 m flying altitude (depending on the site) and with an average point density
of 8.5 points per m?. At the Sabah state sites, the data were acquired through a survey
undertaken by the Natural Environment Research Council (NERC) Airborne Research
Facility, UK, in 2014 using a Dornier 228-201 flown at 120-140 knots flight speed and
altitude of 1400-2400 m a.s.] (depending on the site) [26-28]. The LiDAR data were pre-
processed by NERC and made available at the Centre for Environmental Data Analysis
(CEDA) archive [29]. The LiDAR point cloud processing was performed in R programming
using the LidR package [30]. The relevant steps included filtering, classification for ground
and surface returns and producing a canopy height model (CHM) at 1 x 1 m resolution.
The CHM(s) over the four sites were utilized for the validation and selection of suitable
GEDI metrics, resampling resolution and method to resample GEDI data as a proxy of the
maximum canopy height over Malaysia.
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2.2.2. GEDI Data

The GEDI spaceborne LiDAR system is orbiting on board the International Space
Station with near-global coverage between 51.6° and —51.6° latitude. The instrument
consists of three lasers, one of which is divided into two, and produces four beams dithered
into eight-track ground transects. The illuminated shots are circular footprints of ~25 m in
diameter spaced 60 m apart in the track direction and 600 m in the cross-track direction.
The laser energy return is tracked as a function of time to generate geolocated waveforms,
which are processed to several higher-level products by the GEDI team. The data products
include L2A for height metrics, L2B for cover and vertical profile, L3A for gridded surface
metrics and L4A and L4B for footprint and gridded aboveground biomass density [22,31].
The GEDI L2A [32] data product contains canopy relative height metrics rh (0-100) and
has been made recently available on Google Earth Engine (GEE) [33]. All available data
(April 2019 to September 2020) for both GEDI L2A first and second release (Version 1 and
Version 2) were used for comparison with the ALS data. The V1 data were downloaded and
preprocessed in R for all of Malaysia [34]. However, only GEDI V2 accessed on GEE after
its recent release was used for further analysis due to its significant improvement in terms
of accuracy and valid shots. The data were filtered using the quality and degradation flag
provided in L2A bands. Measurements over non-forest areas were masked using Malaysian
forest polygons provided by FRIM, and observations that were unlikely to be forest were
filtered as outliers using the following thresholds: rh100 < 90 m and rh90 > 3 m. GEDI
spatial coverage over the sites where ALS data were available is shown in Figure 1.

2.2.3. Climatic and Topographic Data

Multiple indices were selected as the potential climatic drivers of canopy height
(Table 1). For the climatic variables, we used annual mean precipitation, annual mean
temperature, the mean temperature of the wettest and driest quarter and the mean precipi-
tation of the wettest month. All the climate data were obtained from the WorldClim dataset
available in GEE [35]. The main proxy of water availability was calculated as the difference
between the annual precipitation and the annual potential evapotranspiration [12,19]. This
layer was generated using the annual potential evapotranspiration extracted from CIGAR'’s
recent global dataset release at 1 x 1 km. This recent dataset was chosen over other datasets
due to its comparable spatial resolution and relative influence as shown in previous studies
that used previous versions [36]. The topographic variables considered in this study were
slope, aspect, mean curvature, Gaussian curvature, vertical, horizontal, max, and min
curvature. The Shuttle Radar Topographic Mission Digital Elevation Model (SRTM-DEM)
dataset was used to derive the relevant topographic characteristics at 1 x 1 km using the
TAGEE package in GEE [37]. All included variables and relevant reference studies are
listed in Table 1.

Table 1. Climate and topography variables.

Indices Resolution Reference Studies Source of Used Dataset

Annual mean temperature (AMT) *
Mean temperature of wettest quarter (MTWQ)
Mean temperature of driest quarter (MTDQ) 1x1km [9,12,19,38] World Climate
Annual mean precipitation (AP)
Precipitation of the wettest month (PWM)

Precipitation minus potential evapotranspiration (P-PET) * 1 x 1km [12,13,19] CIGAR

Elevation *
Slope *
Aspect *
Mean curvature *

. 1 x 1km [14,15] SRTM
Gaussian curvature
Vertical curvature
Horizontal curvature
Max/Min curvature
Forest polygons Vector - FRIM

* The six variables that were included in the final model.
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2.3. ALS and GEDI Canopy Height Comparison

In order to obtain comparable measurements from GEDI data and decide on the
representative scale and metric as a proxy of canopy height over Malaysia tropical forest,
different aggregation methods and resolution were explored for gridding and comparing
GEDI and ALS data. Multiple grids of different resolutions (25, 30, 90, 250, 1000 m) were
created to obtain comparable GEDI-ALS pairs. Both GEDI and ALS data were aggregated
into these grids using several combinations shown in Table 2 to decide on the best-correlated
GEDI metric and aggregation method to use for producing a GEDI-based canopy height
map. To generate the map, 1 x 1 m CHM data over the considered sites were uploaded
to the GEE, where all processing was conducted. The SAFE project area was divided into
two sites to ease the computation of a large number of observations. The statistics used
for comparison were: the coefficient of determination (R?), p, absolute (m) and relative (%)
root mean square error (RMSE; rRMSE) and mean absolute error (MAE).

Table 2. GEDI and ALS aggregation combinations per grid resolution.

Grid Resolution 25m 30, 90, 250, 1000 m
Considered GEDI metrics rh50, rh75, rh90, rh95, rh100 rh50, rh75, rh90, rh95, th100

No aggregation; Max aggregation (rh-Max)

GEDI Gridding comparison at footprint level 90th percentile (rh-90)
Mean (rh-Mean)
Max aggregation (Hays-Max)
ALS Gridding 95th percentile (Hays-95)

90th percentile (Hars-90)
Mean (HALS Mean)
RZ
Mean absolute error (MAE)
Root mean square error (RMSE)
relative RMSE (rRMSE)

Comparison statistics

2.4. Canopy Height Modeling and Variables Importance

In order to rank the included variables and determine the most influential drivers of
canopy height for further analysis, we utilized ML's ability to fit the functional relationship
between a response variable and multiple independent variables. Herein, our response
variable was canopy height (m) derived from GEDI, and our predictor variables were
the climate and topography variables described in Table 1. In random forest regression,
variable importance is determined by averaging and normalizing the difference of the mean
square error on the out-of-bag data for each tree before and after permuting a variable
(i.e., as the decline in accuracy considering the permutation of variables) [39-41]. In the case
of boosting, the importance is summed over each boosting iteration following the same
calculation. All steps and processing are performed in R using the ‘caret’, ‘randomForest’
and “xgboost’ packages [41-43].

2.4.1. Machine Learning Algorithms

Primarily, two ML algorithms were used in this study. One was the random forest
algorithm (RF), an ensemble ML that combines multiple decision trees created from boot-
strapped datasets and considering subsets of variables in each step. The other algorithm
used was the extreme gradient boosting tree (XGBTree), a regularized gradient boosting
known for its efficiency and high performance [44]. The algorithm builds trees in sequence
by predicting the residual based on the previous prediction, then prunes and adds to the
previous trees based on adjustable hyperparameters. An additional implementation of
XGB, the XGBDart, is also utilized in this study to provide additional insights as the dart
base learner removes trees (dropout) during each round of boosting, allowing for more
control over potential overfitting problems. The models have been chosen for their known



Remote Sens. 2022, 14, 3172

7 of 21

high performance with nonlinear relationships, predictive ability and wide use in ecological
models and forest application at fine, regional and global scales, e.g., [44-48].

2.4.2. Model Development and Feature Selection

The dataset was split into 80% training and 20% test data. Each model was trained
using fivefold cross-validation fed by identical training data and then tested using the
20% validation set. A subset of 10% of the training data was used to develop the model
and optimize the hyperparameters. Concerning the feature selection in this study, where
screening the variable importance for ecological interpretation is the intended outcome
of the model, the variables were tested for Pearson’s correlation coefficient. Backward
elimination was used for eliminating spurious, non-informative and highly correlated
variables one at a time considering the following criteria: Pearson’s correlation score, RF
variable importance ranking, multiple regression p and model performance after removing
the variable.

The number of trees and the number of predictors at each split were optimized at (500,
2) respectively for the RF model. For XGB, the optimized hyperparameters used in the final
model for number of estimations, max_depth, learning and subsample were (1500, 6, 0.3, 1)
respectively. The drop and skip rates for the XGB dart implementation were (0.1 and 0.5)
respectively.

2.4.3. Model Validation

The models were evaluated using the test data and internally using the five k-fold
cross-validation. The evaluation statistics were Pearson’s correlation (R), the coefficient of
determination (R?), absolute (m) and relative (%) root mean square error (RMSE; rRMSE)
and bias and mean absolute error (MAE).

n ~ 2
o (Y- i)
RMSE =\ —~ 7/ 1)
n
rRMSE = %SE x 100, @)
i1 (\71 - Yi)
MAE= —— 7, )

where Y; is the estimated canopy height, Y; is the observed canopy height; 1 is number of
observations and Y is the mean observed canopy height.

2.5. Exploring the Bivariate and Multivariate Relationships
2.5.1. Bivariate Relationships

The relationships between each of the most important predictors considered in the final
model and the dependent variable (canopy height represented as the GEDI best correlated
metric with ALS) was explored individually by fitting a generalized linear regression
model (GLM) and power regression to the power of four. Moreover, the relationship
between maximum observed canopy height and variable gradients was investigated by
recording the maximum height found in all grid cells corresponding to each increment of
each variable (0.1 °C for temperature, 1 mm for P-PET, 1 m for elevation, 0.1° for slope) and
fitting GLM and power regression.

The relationship was examined separately for peninsular and eastern Malaysia, which
was then followed by an analysis for all of Malaysia. Similar patterns were found for both
Borneo and peninsular Malaysia considered separately.



Remote Sens. 2022, 14, 3172

8 of 21

2.5.2. Multivariate Relationships

For the multivariate analysis, two of the most important variables based on ranking
were considered. Maximum canopy height observed for each 1 mm increment of water
availability P-PET was plotted according to four elevation zones (0-500 m, 500-1000 m,
1000-1500 m, <1500 m), and the GLM and power regression model were fitted to explore
the relationship. To gain further insights, a three-dimensional plot of GEDI canopy height,
P-PET and elevation were illustrated, and three planes representing simplified ML models
were fitted to examine the trend visually. The ML models were trained using the same
training data and hyperparameters but considering only the two most important variables:
P-PET and elevation.

3. Results
3.1. Comparison between ALS and GEDI-Derived Canopy Height

The number of GEDI shots considered over the Malaysian tropical forest area after
filtration was 3,657,038, with an average spatial coverage of 22 pulses per km?. The average

GEDI spatial coverage per km? in the study sites ranged between 10.6 and 27.3 shots per
km? Table 3.

Table 3. GEDI coverage over the ALS data sites.

Peninsular Part Borneo Part
Study Sites :
Y FRIM Negeri Danum SAFE1  SAFE2
Sembilan

Area (km?2) 129 6.6 75.5 196.3 200.3
GEDI shots (1) 405 73 1807 3620 5128
Average GEDI shot per 1 km? 21.5 10.6 22.5 26.5 27.3

rh90 GEDI average height (m) 25.7 30 41.6 23.7 23
ALS average height (m) 21.5 24.5 33 14.6 18.8

The multi-resolution and cross-aggregation comparison between GEDI-derived canopy
height and ALS canopy height resulted in 60 pairs of comparisons for each site for each of
the 5 GEDI considered metrics (rh50, rh75, rh90, rth95, rh100) as described previously in
Table 2. The most consistent results, based on higher R? and lower RMSE, occurred when
comparing the ALS data gridded based on the 90th height percentile (Ha1s-99) and GEDI
metric rh90. This pattern remained true when conducting the comparison for different
GEDI aggregation methods and across the different resolutions. For all comparisons con-
sidered, the gridded GEDI rh90 metric compared with Hays.99 yielded a higher and more
consistent correlation across all different comparison combinations and resolutions. The
complete comparison results along with a summary of the statistics for GEDI coverage over
each site can be found in the Supplementary Materials (Figures S1-S5). Therefore, GEDI
rh90 aggregated using the 90th percentile was considered for further analysis.

Concerning the variation in R? and RMSE across scales, 1 x 1 km had the highest
correlations observed among all tested grid resolutions (Figure 2). A slight variation was
observed between the finer resolutions of 25, 30 and 90 m across all sites. In contrast, for
coarse resolution, a slight improvement for R? to 250 m was followed by a significant
increase for 1 x 1 km in all sites (except for the Negeri Sembilan site). RMSE witnessed a
consistent decline as resolution became coarse across all sites.

3.2. Machine Learning-Derived Canopy Height Models

Concerning evaluating the statistical uncertainty of ML models in estimating canopy
height, the three models performed relatively satisfactorily in terms of R> and RMSE
calculated based on the unseen 20% testing data. XGB Tree was the best performing model
(R? = 0.85, RMSE = 6.1 m) (Figure 3a). Considering the internal fivefold cross-validation of
each model, RF explained 38% of the variance, while XGB Tree and DART explained 28%
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and 30% respectively. The three models reported variable importance consistently, with
AMT, P-PET and elevation as the three most important explanatory variables. AMT ranked
first in the XGB models, while P-PET ranked first in the RF models, with slight variations

between the three important variables” rankings in all models (Figure 3b).
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Figure 3. (a) Models’ performance on the testing data: (al) RF model; (a2) extreme gradient boosting

tree; (a3) extreme gradient boosting Dart; (b) variable importance rankings for all models.
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3.3. Exploring the Bivariate and Multivariate Relationships
3.3.1. Bivariate Analysis for Canopy Height and Climatic Variables

In addition to the visual exploration of canopy height and each climatic variable,
generalized regression models were fitted for assessing the relationship between canopy
height and the annual mean temperature along with canopy height and P-PET. Moreover,
the relationship of maximum canopy height for every 0.1 °C increment of temperature
and for each 1 mm increment of P-PET was investigated in a similar manner. The same is
illustrated in Figure 4.
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Figure 4. Canopy height relationships with the climatic variables: (a) canopy height by mean annual
temperature; (b) maximum canopy height per 1° increment of mean annual temperature; (c) canopy
height by P-PET; (d) maximum canopy height per 1 mm increment of P-PET.

The visual interpretation and the fitted models depict an association between canopy
height and the mean annual temperature (Figure 4a). Concerning the relationship with the
maximum canopy height, as depicted by the fitted models (R? = 0.18, R? = 0.5 for GLM
models to the first and fourth orders, respectively), the lowest maximum height occurred
where temperature is lower and increasing height is observed as the temperature increases.
Peak is observed at ~26 °C, and a sharp decline is seen afterwards.

The distribution of canopy height per P-PET (Figure 4c) indicates that taller trees
are associated with moderate P-PET (between 800-1750 mm). However, a less obvious
linear relationship can be seen directly from canopy height and P-PET. For the relationship
between maximum canopy height per 1 mm P-PET increment, the fitted curve (R? = 0.54 for
GLM model to the fourth order) depicts that maximum canopy height increases with P-PET
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to an upper threshold of ~800 mm and then decreases gradually for higher water supply.
This is then followed by a sharp decrease after a certain breaking point representative of
excessive water supply (~2700 mm). Tall trees occurred across all modest P-PET values,
and a sharp decline in maximum tree height was observed at both ends of P-PET gradients
(critical thresholds < 800 mm and >2700 mm) (Figure 4d).

3.3.2. Bivariate Analysis for Canopy Height and Topographical Variables

The relationships between each of the considered topographic variables and canopy
height were evaluated independently taking the same approach as considered in the
previous section. Figure 5 depicts those relationships. The fitted models and graph
(Figure 5a) indicate a strong association between canopy height and elevation, with left-
skewed distribution and the tallest trees observed at lower elevation gradients. A strong
negative relationship between maximum canopy height and elevation increments was
depicted in the fitted models (R? = 0.52 and R? = 0.58 for GLM models to the power of 1
and power of 4, respectively) (Figure 5a,b). The trend between maximum canopy height
and elevation increments indicates that the negative association with higher elevation
gradients starts at approximately 500 m as a breaking point. Canopy heights observed
below 500 m were on average 4 m taller than those between 500 and 1000 m, 8 m taller than
ones observed between 1000 and 1500 m and 28 m taller than those observed at altitudes
above 1500 m.

The negative association between maximum canopy height and slope angle gradients
indicates that taller trees occurred on flat land and shorter trees occurred on steeper slopes
(Figure 5¢,d). Topographic variable curvature and aspect are found to be less influential
at the considered 1 x 1 km resolution. Weak associations are depicted between canopy
height and topographic curvature, canopy height and canopy aspect (Figure 5e,f). Tall trees
occur over all curvature gradients and in all aspect directions, with slight variation across
the landscape.

3.3.3. Multivariate Analysis for Canopy Height, Elevation and P-PET

The multivariate relationship between canopy height, elevation and P-PET were
explored by partitioning the co-variables according to elevation intervals and fitting a
separate model into each resulting canopy height-P-PET interval per elevation zone as
illustrated in Figure 6.

The association between maximum canopy and P-PET was significant and strong at
elevation 0-500 (R? = 0.48 for GLM model power 4). This relationship was less significant
for higher elevation intervals as it was found to be weakened into R? = 0.35 for GLM model
power 4 in the elevation zone between 500 and 1000 m; it then declined significantly after
1000 m before there was no observed relationship above 1500 m altitude.

To gain further insights into the multivariate relationships between canopy height,
elevation and P-PET, the fitted ML models were plotted as a fit plane in three-dimensional
plots for each of the three considered models (Figure 7). At the extreme ends of the elevation
and water availability gradients, canopy height was found to be shorter. When both the
water availability is extensive and the elevation is high, an obvious trend for shorter trees
is shown. This trend was supported by the previous scatter plot of max canopy height
aggregation per water availability gradient in different elevation zones.
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Figure 5. Canopy height relationships by topographic variable: (a) canopy height by elevation
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(b) maximum canopy height per 1 m increment of elevation gradient; (c) canopy height by slope;
(d) maximum canopy height per 1° increments of slop gradients; (e) canopy height by topographic

curvature; (f) Canopy height by topographic aspect.
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Figure 6. Maximum canopy height per 1 mm increment of P-PET gradient across different elevation
zones: (a) elevation < 500; (b) 500 < elevation < 1000; (c) 1000 < elevation < 1500; (d) elevation > 1500.
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Figure 7. The canopy height-P-PET-elevation functional relationship as a plane fitted based on the
three models: (a) RF; (b) XGB tree; (c¢) XGB Dart.

The results corresponding to Borneo and Peninsular Malaysia are provided separately
in the Supplementary Materials Figures S6 and S7.
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4. Discussion
4.1. GEDI Validation and Resampling

In this study, we validated the GEDI relative height metrics (rh50, th75, rh90, rh95,
rh100) using different resampling approaches (mean, 90th percentile, max aggregation)
over different spatial resolutions (GEDI footprint level, 30, 90, 250, 1000 m) to derive the
representative proxy of maximum canopy height over the Malaysian tropical forest based
on GEDI L2A data. The study confirmed that canopy height obtained from GEDI has a
strong correlation with ALS data over the different sites, as shown in previous studies, and
thus, it is useful to assess canopy height variation across landscapes [49-53].

The results showed that GEDI relative height metric th90 compared with the Hayg 99
was the most consistent among all compared pairs (Table 2) in terms of higher R? and
lower RMSE at all sites when comparing at the footprint level and at all sites among all
used aggregation methods when comparing for coarse resolutions. Previous studies have
considered such comparisons at footprint level where different GEDI rh metrics were
considered and reported for different regions: rh95 in [51] globally, th98 in [52], rh 95 in [45]
and rh100 in [53] at regional scale. Moreover, differences in correlation using the same
GEDI rh metric were also found when comparing different sites in the same region [53].
These inconsistencies could be due to site-specific factors such as canopy cover density,
site homogeneity and topography (e.g., steep slope), which have the potential to interfere
with the quality of recorded energy pulses [52-55]. This reported trend of lower estimation
accuracy associated with steep slopes was observed in this study at the Danum Valley and
FRIM sites where steep slopes are more common and lower R? at footprint levels were
found (Figure 2). Another reason for this variation in the estimated accuracy and/or the
best correlated metric across the sites could be due to the differences in the data acquisition
dates for ALS and GEDI data. This time difference could imply growth or disturbances
changes [52,53]. For instance, an annual mean growth of 0.5 m could result in a 3 m
error for a 6-year gap in data acquisition, which could be the case for the study sites in
Sabah state. Finally, the increase in R? for coarse resolutions (>90 m) when examining the
correlations across multiple resolutions was consistent for all sites except Negeri Sembilan
(Figure 2). This increase in R?> might be attributed to the inclusion of multiple GEDI
measurements in the compared grid cells for coarse resolutions, which could mitigate the
influence of the aforementioned factors affecting the accuracy, as well as any geolocation
error. Regarding the considered resolution at 1 x 1 km, the influence of GEDI spatial
coverage on the correlation strength between sites was examined in Figure 8. The lower
GEDI coverage over the Negeri Sembilan site (~10 shots/km?) compared with other sites
(>~22 shots/km?) explained the observed lower R? for this site and indicated that higher
accuracy is dependent on higher spatial coverage per grid cell. Such comparisons can be
useful for similar future studies as they provide insights into determining a threshold for
average shot per grid when resampling height maps at coarse resolution.

The results suggest that the correlation is highly dependent on the heterogeneity of
the site, its topography and the spatial coverage of GEDI shots. Therefore, calibration
with local data to determine the best correlated metric and region-specific consideration is
suggested as an important process for deriving representative height at the intended scale.
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Figure 8. R? based on GEDI and ALS height correlation per average number of GEDI shots per
1 x 1 km cell across different sites.

4.2. Canopy Height Relationship with Climatic and Topographic Variables

In this study, we made use of three ML fitted models to gain insights into the strength of
the functional relationships between canopy height and chosen variables and their relative
importance [14,15,40,47,56]. The relatively significant and consistent values for R? yielded
from the three fitted models (Figure 3a) indicated strong relationships between forest
heights and the studied variables. The findings from the ML models for variable importance
(Figure 3b) show that canopy height is largely dominated by three variables: P-PET (proxy
for water supply/availability), mean annual temperature and elevation. Ranking the
most important variables based on the possible quantification of the predictor’s relative
importance allowed us to focus the analysis on the most important variables [40,47,56].
This finding regarding the variable importance of water supply and temperature is in line
with the tropical forest literature and the previous studies that accounted for similar scales
in different regions [12-14,19,57].

4.2.1. Temperature

The observed association between temperature and canopy height in tropical forests is
well-known as temperature is considered one of the major climatic factors of tropical forest
structure and dynamic [57]. In line with the previous studies, the maximum canopy height
increases as temperature increases to an observed threshold of 26 °C following which it
declines sharply for extreme temperatures (Figure 4a,b). A similar trend and upper limit
were reported previously on a global scale with a decline breakpoint at 25 °C [12].

In lowland tropical forests, temperature gradients experience little spatial varia-
tion [58]. Although this might indicate that the observed variation in maximum canopy
height per temperature gradient could be driven by other factors rather than the tempera-
ture alone [12], it may also suggest that given the observed association with canopy height
and the known relationship with forest dynamics, even a marginal increase in temperature
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may affect forest maximum height. Thus, for wider temperature gradients, such as in moun-
tainous areas where temperature decreases at higher altitudes, the thermal range for species
performance and distribution would be subject to an increase in temperature [57]. Whereas
an increase of 2-3 °C is believed to drive many species out of their thermal range and to
extinction in the current projections of global temperature increase [57-59]. Therefore, the
suggested sensitivity of maximum canopy height variation to temperature changes could
play a significant role in understanding and monitoring forest responses to climatic changes.
This would be even more relevant for montane forests, where temperature gradients vary
and could be impeded, among other key variables, into elevation gradients as discussed in
Section 4.2.3.

4.2.2. Water Availability

The water availability proxy P-PET, described as the difference between annual precip-
itation and evapotranspiration, is observed to have a positive relationship with maximum
canopy height up to a certain threshold before it becomes a negative relationship for
excessive water supply.

This initial positive trend up to a certain threshold has been reported in many studies
at different scales [19,60], while the negative decline after this threshold for excessive water
supply was observed and reported in others [12]. Herein, the results confirm the findings
of [12], who used space LiDAR to examine the same relationship on a global scale and
inventory data at national scale; these authors depicted a peak of maximum height at
680 mm P-PET gradient (compared with 800 mm in our study) and a declining trend at
higher P-PET. However, in contrast to the reported bell-shaped curve (R? = 0.72) in [12], we
observed a fourth-order curve fitted to maximum canopy height as the response variable of
P-PET (R? = 0.54) in this study. This fit depicts that although the maximum canopy height
starts declining gradually after a comparable peak (~800 mm), the sharp decline occurs
only after a much higher breaking point (~2700 mm) (Figure 4d).

The trend of decreasing canopy height with excessive water supply is explained in
previous studies and has been attributed to the accompanied reduction of O2 in soil, root
aerenchyma, [12,61,62], declines in the radiation inputs that affect photosynthesis [12,63]
and cloudiness [12,57,64]. The latter is more relevant to tropical forests as high precipitation
regions are often associated with persistent thick clouds that would reduce forest access to
sunlight. This might partially explain the gradual trend of maximum canopy height decline
for P-PET between the peak and breaking point before the effect of the aforementioned
factors become more dominant for the excessive water supply. This could be investigated
further by evaluating height variation trends near streams and water sources where water
supply is not associated with precipitation. Nevertheless, this weak response to changes
in the mediating water supply values between the peak and breaking point indicates the
effect of other factors along with P-PET in controlling maximum canopy height variation.

The observed relationship involving diminishing maximum tree height at both ends
of the P-PET gradients suggests the partial predictability of maximum tree height based
on P-PET and hence, the usefulness of including P-PET in canopy height extrapolating
models. This relationship and the identified critical thresholds of P-PET gradients (<800 mm
and >2700 mm) could be useful to forest managers for monitoring forest response to
precipitation and evapotranspiration changes and for the suitability analysis of forestation
regions. Furthermore, it could also prove beneficial for the improvement of carbon-cycle
and forest-growth models [12,63].

4.2.3. Topographic Variables

Tall trees were observed in all elevation gradients as expected, although trees were
higher and more abundant in the lowlands areas (Figure 5a). These results depict a negative
trend between maximum canopy height and higher elevation gradients after a breaking
point at approximately ~500 m (Figures 5b and S8). This trend and the negative associa-
tion have been reported in many studies in tropical regions as well as in different forest
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biomes [14,15,57,65]. Elevation controls atmospheric pressure, temperature, cloudiness
and many environmental changes tied to altitude such as drain, sunshine exposure, wind,
soil and human land use [66-68]. Such trends are very likely to be attributed to these
underlying variables such as temperature, which experiences a steady decrease at higher
elevation and under greater cloud cover and wind exposure [57,65]. Decreasing availability
of soil nutrients and water could partly also explain this decline [69].

Similar trends were found in previous studies, although breaking points were observed
at different elevation levels. For example, in tropical regions, Clark et al. [57] found taller
trees at altitudes less than 1000 m. Ameztegui et al. [65] studied montane forests in Spain
and reported elevation breaking points at ~1600 m. Nevertheless, while the need for
investigating the accurate position of such a breaking point is clear, exploiting its existence
is of pivotal importance for monitoring mountain forest response to projected climatic
changes as they provide the potential ability for isolating climatic effects from the other
changes [65].

Topographic curvature (Figure 5e) and aspect (Figure 5f) are found to be less important
in the case of the 1 x 1 km scale considered in our study. The influence of topographic
curvature and aspect is found to decrease with scale [14]. Maximum canopy height de-
creased with increased slope (Figure 5¢), and the tallest trees occurred at less steep slopes,
contradicting previous studies. We acknowledge that the limitations associated with this
study might affect the accuracy of the reported elevation breaking point and the relation-
ship to topography. For instance, the considered scale in this study was 1 x 1 km, and a
weak association between topographic variable and canopy height was reported for the
coarse scale [14]. In addition, mountainous tropical landscapes are often characterized by
steep slopes with large estimated areas of montane tropical forest at slope > 27 [70]. This
might affect the quality of LIDAR data in such areas [52-55]. Additionally, considering the
regional focus of this study, the distribution of forest height data with elevation data was
left skewed due to the more abundant land and forest area in lower elevation zones.

4.2.4. The Multivariate Relationship between P-PET-Elevation

Considering the marginal differences in relative importance between the three highest
ranked variables, and given the steady relationship between temperature and elevation, we
considered only P-PET and elevation for this analysis. The relationship between maximum
canopy height and P-PET according to elevation intervals (0-500 and 500-1000 m) was in
line with the observed trend across all elevation gradients (Figure 6a,b). Interestingly, this
relationship was weaker for higher elevation gradients above 1000 m and diminished for
elevation gradients above 1500 m (Figure 6¢,d). To gain additional insights into this interac-
tion between the two most important variables, 3D planes were fitted to the multivariate
relationship (Figure 7) based on the three implemented ML models [56]. The fitted planes
for the three models confirmed the previously observed trend for shorter trees when both
the water availability is extensive, and the elevation is high.

At the extreme elevation gradients and water availability gradients, canopy height
was found to be shorter based on the three planes fitted on the ML models (Figure 7a—c).
Nevertheless, the relationship between canopy height and water availability is depicted
to be less significant for the extreme elevation values as illustrated in the scatter plot
from max canopy height per P-PET gradient in the higher elevation zones (Figure 6d).
The observed interrelationship contrasts the negative effect of extensive water supply at
higher elevation, and the trend of shorter trees is most likely explained by the temperature
limitation, which is one of the dominant factors controlled by elevation [19]. Whereas
elevation and water supply together dominate the promotion of tallest trees [71], this trend
suggests the intertwined use of the identified thresholds for both elevation and water
availability to support the development of effective tools for monitoring the response of
montane forest to climatic changes.
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5. Conclusions

In this paper, we investigated the regional relationships and patterns of maximum
canopy height across climatic and topographic variables focusing on elevation gradients
and water availability and using a GEDI-derived canopy height map. Maximum canopy
tree heights increase with increasing water supply up to a specific threshold (800 mm), de-
crease slightly for mediating gradients, and have a negative relationship above the breaking
point of ~2700 mm. This pattern is found to be strong in an elevation zone below ~1000 m
and starts to get weaker for higher altitudes, probably intertwined with the temperature
limitation. These insights into this relationship along with the determined thresholds
and breaking points could help with forest management practices, especially in regard
to mountainous forest functioning, resilience, recovery and response to climate change.
Simultaneously, this study demonstrates the power of GEDI in helping to better analyze the
roles of the factors influencing canopy height variations and further comprehend biomass
sequestration by different forest strata. Moreover, our investigation paves the way for
future research endeavors to better understand the underlying patterns of other interactions
between the environmental drivers, and therefore, developing efficient models at national
and regional scales while simultaneously bridging the gap between theory, modeling and
management, especially for montane forests.
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