GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Book
    Book
    Kidlington : Elsevier Science
    Keywords: Konferenzschrift
    Type of Medium: Book
    Pages: III S., S. 789 - 1140 , Ill., graph. Darst., Kt
    Series Statement: Deep sea research 54.2007,8/10
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 114 (1992), S. 119-129 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Results from a 5-yr study (1985 to 1989) in Auke Bay, Alaska show that termination of the spring bloom consistently occurred at limiting nitrate concentrations. Following nutrient exhaustion, phytoplankton sinking rates increased and displayed greater temporal variability. Threshold nitrate concentrations, approximating Ks values of the species present, were found to signal initiation of increased sedimentation. For Thalassiosira aestivalis, the threshold was ∼2 μmol l-1, while for Skeletonema costatum the threshold was ∼1 μmol l-1, suggesting genus-specific differences in sinking-rate sensitivity to nitrate exhaustion. Overall, sinking rates of the three principal genera ranked (high to low) Thalassiosira spp.〉 S. costatum〉Chaetoceros spp., while the nitrate sensitivities of the sinking rates of the genera ranked (high to low) Thalassiosira spp.〉 Chaetoceros spp.〉 S. costatum. Thalassiosira spp. showed the most consistent sinking rate increases following nutrient impoverishment. During a bloom dominated by T. aestivalis, a decrease of cell sinking rate with depth coincided with a decrease in short-term nutrient stress as measured by intracellular nitrate pools. In addition, no correlation was found between chain length or aggregate formation and sinking rate for this species. Though we measured only small-scale cell-cell adhesion, not larger-scale marine snow formation, this supports the notion that the sinking rates of Thalassiosira spp. were controlled primarily by cell physiology. For S. costatum, however, shorter chains sank faster. The sinking behavior of the species studied here figures prominently in their pelagic ecology and in the carbon flux of coastal ecosystems, both of which are driven by short-term variability.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 114 (1992), S. 131-138 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A 5-yr study (1985 to 1989) of spring bloom sedimentation in Auke Bay, Alaska, indicates that the sinking response of diatoms to ambient nutrients influences both species succession during the spring bloom and the subsequent sedimentation of new production. Diatoms from the genera Thalassiosira, Chaetoceros and Skeletonema formed the bulk of the spring bloom each year. Growth of Thalassiosira spp. consistently initiated the primary bloom, while Skeletonema costatum tended to grow later in, or after, the primary bloom. We postulate that this successional pattern is driven by interspecific nutrient competition. Overall, sedimentation flux of the dominant species of bloom diatoms was correlated with surface concentrations of cells integrated over the bloom period. In fact, different linear relationships existed when Thalassiosira and Chaetoceros spp. were considered separately, but not for Skeletonema sp., indicating that marked differences exist between the sedimentation tendencies of these genera. The observed inter-generic differences are explicable by the different overall sinking rates, as well as different nutrient-sensitivities of the sinking rates of each genus. Thalassiosira spp., the fastestsinking and most nutrient-sensitive species, contributed up to 10 x more carbon to the benthos in all years of the study, reaching a maximum of 11.1 gCm-2 over a single spring bloom event in 1988. This study indicates that the tendency to sink to the benthos during and/or after a bloom is highly dependent on species-specific cell physiology, and supports the idea that it is the fast-sinking, nutrient-sensitive diatoms, such as Thalassiosira species, that constitute the major source of vertical carbon flux in this embayment and other such coastal ecosystems during the spring bloom.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (〉60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate 〈 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-22
    Description: Third Symposium on the Ocean in a High-CO2 World
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-22
    Description: Third Symposium on the Ocean in a High-CO2 World
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-09-12
    Description: This report provides recommendations to foster collaboration and cooperation between technologies and disciplines and for implementing truly integrated ocean observing systems. Based on an intensive literature review and a careful examination of different examples of integration in different fields, this work identifies the issues and barriers that must be addressed, and proposes a vision for a real implementation of this ocean integration ambition. This work is a contribution to the implementation of EOOS, a much-needed step forward in Europe, following the international guidance of GOOS.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Optical particle measurements are emerging as an important technique for understanding the ocean carbon cycle, including contributions to estimates of their downward flux, which sequesters carbon dioxide (CO2) in the deep sea. Optical instruments can be used from ships or installed on autonomous platforms, delivering much greater spatial and temporal coverage of particles in the mesopelagic zone of the ocean than traditional techniques, such as sediment traps. Technologies to image particles have advanced greatly over the last two decades, but the quantitative translation of these immense datasets into biogeochemical properties remains a challenge. In particular, advances are needed to enable the optimal translation of imaged objects into carbon content and sinking velocities. In addition, different devices often measure different optical properties, leading to difficulties in comparing results. Here we provide a practical overview of the challenges and potential of using these instruments, as a step toward improvement and expansion of their applications.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: In this paper we review on the technologies available to make globally quantitative observations of particles, in general, and plankton, in particular, in the world oceans, and for sizes varying from sub-micron to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical, acoustical methods and analysis using particles counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next ten years to move towards our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries, and carbon sequestration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Biogeochemical cycling of carbon (C) and nitrogen (N) in the ocean depends on both the composition and activity of underlying biological communities and on abiotic factors. The Southern Ocean is encircled by a series of strong currents and fronts, providing a barrier to microbial dispersion into adjacent oligotrophic gyres. Our study region straddles the boundary between the nutrient-rich Southern Ocean and the adjacent oligotrophic gyre of the South Indian Ocean, providing an ideal region to study changes in microbial productivity. Here, we measured the impact of C- and N- uptake on microbial community diversity, contextualized by hydrographic factors and local physico-chemical conditions across the Southern Ocean and South Indian Ocean. We observed that contrasting physico-chemical characteristics led to unique microbial diversity patterns, with significant correlations between microbial alpha diversity and primary productivity (PP). However, we detected no link between specific PP (PP normalized by chlorophyll a concentration) and microbial alpha and beta diversity. Prokaryotic alpha and beta diversity were correlated with biological N2 fixation, itself a prokaryotic process, and we detected measurable N2 fixation to 60° S. While regional water masses have distinct microbial genetic fingerprints in both the eukaryotic and prokaryotic fractions, PP and N2 fixation vary more gradually and regionally. This suggests that microbial phylogenetic diversity is more strongly bounded by physical oceanographic features, while microbial activity responds more to chemical factors. We conclude that concomitant assessments of microbial diversity and activity is central in understanding the dynamics and complex responses of microorganisms to a changing ocean environment.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...