GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 21
    Publication Date: 2019-09-23
    Description: Increasing anthropogenic CO2 concentration in the atmosphere is altering sea water carbonate chemistry with unknown biological and ecological consequences. Whereas some reports are beginning to emerge on the effects of ocean acidification (OA) on fish, very little is known about the impact of OA on jellyfish. In particular, the benthic stages of metagenetic species are virtually unstudied in this context despite their obvious importance for bloom dynamics. Hence, we conducted tri-trophic food chain experiments using the algae Rhodomonas salina as the primary producer, the copepod Acartia tonsa as the primary consumer and the benthic life stage of the scyphozoans Cyanea capillata and Chrysaora hysoscella as secondary consumers. Two experiments were conducted examining the effects of different levels of CO2 and food quality (experiment 1) and the effect of food quality and quantity (experiment 2) on the growth and respiration of scyphozoan polyps. Polyp growth and carbon content (µg polyp−1) were not affected by the CO2 treatments, but were significantly negatively affected by P limitation of the food in C. capillata but not in Ch. hysoscella. Growth and carbon content were reduced in low-food treatments, but increased with decreasing P limitation in high- and low-food treatments in C. capillata. Respiration was not significantly influenced by food quality and quantity in C. capillata. We conclude that phosphorus can be a limiting factor affecting the fitness of scyphopolyps and that P-limited food is of poor nutritional quality. Furthermore, OA, at least using realistic end-of-century scenarios, will have no direct effect on the growth of scyphistomae
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-08
    Description: Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-10-11
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-10-11
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-01
    Description: Bimodal depth distribution patterns observed for sprat Sprattus sprattus larvae in previous field studies conducted in the deep basins of the Baltic Sea have led researchers to hypothesise that larval sprat condition was depth-dependent. We examined this hypothesis by measuring morphological, biochemical and otolith-based proxies for nutritional condition in sprat larvae collected in discrete 5 m depth intervals from the surface to the bottom in the central Bornholm Basin. Similar to earlier studies, larval sprat were most abundant in 2 depth strata (0 to 10 and 65 to 75 m). Their nutritional condition in surface and deep waters was not uniformly expressed by the different indices. For example, sprat larvae from 0 to 10 m could not be distinguished from conspecifics caught at 65 to 75 m by a long-latency condition proxy (otolith-based growth rates). Similarly, a medium-latency proxy (RNA:DNA) did not suggest differences in condition between the depths. However, short-latency proxies (protein:standard length and DNA:dry weight) supported the depth-dependent condition hypothesis. The lack of correspondence and pitfalls associated with the use and interpretation of multiple condition indices (e.g. the influences of temperature and body size) are discussed and recommendations to strengthen these various metrics are provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 55 (4). pp. 1485-1498.
    Publication Date: 2017-05-02
    Description: We employed a coupled three-dimensional biophysical model to explore long-term inter- and intra-annual variability in the survival of sprat larvae in the Bornholm Basin, a major sprat spawning area in the Baltic Sea. Model scenarios incorporated observed decadal changes in larval diel vertical distribution and climate-driven abiotic and biotic environmental factors including variability in the abundance of different, key prey species (calanoid copepods) as well as seasonal changes, long-term trends, and spatial differences in water temperature. Climate forcing affected Baltic sprat larval survival both directly (via changes in temperature) and indirectly (via changes in prey populations). By incorporating observed changes in larval diel vertical migration, decadal changes in modeled and observed survival of Baltic sprat agreed well. Higher larval survival (spawning stock biomass) was predicted in the 1990s compared to the 1980s. After changing their foraging strategy by shifting from mid-depth, low prey environment to near-surface waters, first-feeding larvae encountered much higher rates of prey encounter and almost optimal feeding conditions and had a much higher growth potential. Consequently, larvae were predicted to experience optimal conditions to ensure higher survival throughout the later larval and early juvenile stages. However, this behavioral shift also increased the susceptibility of larvae to unfavorable winddriven surface currents, contributing to the marked increase in interannual variability in recruitment observed during the past decade.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-28
    Description: Highlights: • Juvenile fish somatic-, biochemical- and otolith-based condition indices are compared. • RNA/DNA, otolith increments, and somatic condition explained 〉 70% growth variability. • Response times of proxies differ after food deprivation and re-feeding. • RNA/DNA most rapid response, otolith increments explain length but not mass growth. • Caution suggested if condition indices are applied to fish in patchy prey environments. Abstract: Reliable estimates of short- and longer-term in situ growth and condition of organisms are critical if one hopes to understand how the environment regulates survival. This study reports the first comparison of somatic- (K), biochemical- (RNA–DNA ratio, RD) and otolith- (increment widths, OIW) based indices of condition of a young juvenile fish. Measurements were made on European sprat (Sprattus sprattus) that had i) known differences in somatic growth rate caused by providing different, constant prey ration levels, ii) been fed ad libitum at 7, 11, 15, 18 and 22 °C, and iii) been deprived of prey for either 4, 8 or 12 days and re-fed for 8 days. All three proxies explained significant amounts (70 to 90%) of the variability in measured growth rate. In fish experiencing a change in their feeding level and concomitant change in mass-at-length (K), RD tracked changes in both length and mass while OIW only tracked changes in length. Values of OIW and RD were highest at 18 °C suggesting that this is the optimal temperature for growth in these juveniles. During food deprivation, RD and OIW rapidly decreased and reached their lowest values within ~ 4 days. Upon re-feeding, RD increased most rapidly, K was most variable and the response time in OIW was slowest (two-times slower than RD). These patterns reflected preferential allocation of food energy to restore body mass in recently re-fed fish prior to fish increasing both mass and length. These results indicate that the sensitivity and applicability of growth proxies depend on the recent feeding history, that proxies have different response times, and that caution be taken when inferring growth and condition in early life stages of fishes that forage in patchy prey environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-09-23
    Description: We employed coupled 3-D biophysical models to better understand the effects of physical forcing conditions as well as differences in vertical distribution and growth performance on the spatial distribution of larval sprat (Sprattus sprattus) in the North and the Baltic Sea. Our model simulations analysed the influence of abiotic and biotic forcing variability on larval transport and the seasonal and inter-annual variability in spatial distribution of larvae originating from different spawning areas in each of the two systems. Due to strong spatial and temporal differences in temperature, drift durations differed between the two ecosystems. During cold spring and warm summer periods, drift durations in the Baltic were ∼35 and 15 days, respectively, but were somewhat shorter (30 and 10 d) in the North Sea. Changes in larval feeding rates markedly impacted larval growth rate and stage duration, and, hence, environmental histories experienced by larvae as well as their final distribution. Generally, specific spawning sites were relatively well connected to specific juvenile nursery areas in the Baltic. However, in the North Sea, considerable mixing of sprat populations occurred with frontal areas acted as convergence zones for older larvae originating from different spawning sites. The mixing and/or co-occurrence of 18-mm larvae from different source regions were greatest (least) in the early spring (summer) for larvae at colder (warmer) temperatures having longer (shorter) drift durations. Generally, such high mixing probability would not promote small- or medium-scale population distinctness of North Sea sprat. The results of our coupled hydrodynamic/trophodynamic model simulations provide a baseline in quantifying and understanding larval sprat transport in these different ecosystems and exemplify the extent to which environmental variability (e.g., differences in temperature as well as prey availability) can influence spatial distributions of larval fish.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-02-08
    Description: We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-03-10
    Description: Information on physiological rates and tolerances helps one gain a cause-and-effect understanding of the role that some environmental (bottom–up) factors play in regulating the seasonality and productivity of key species. We combined the results of laboratory experiments on reproductive success and field time series data on adult abundance to explore factors controlling the seasonality of Acartia spp., Eurytemora affinis and Temora longicornis, key copepods of brackish, coastal and temperate environments. Patterns in laboratory and field data were discussed using a metabolic framework that included the effects of ‘controlling’, ‘masking’ and ‘directive’ environmental factors. Over a 5-year period, changes in adult abundance within two south-west Baltic field sites (Kiel Fjord Pier, 54°19′89N, 10°09′06E, 12–21 psu, and North/Baltic Sea Canal NOK, 54°20′45N, 9°57′02E, 4–10 psu) were evaluated with respect to changes in temperature, salinity, day length and chlorophyll a concentration. Acartia spp. dominated the copepod assemblage at both sites (up to 16,764 and 21,771 females m−3 at NOK and Pier) and was 4 to 10 times more abundant than E. affinis (to 2,939 m−3 at NOK) and T. longicornis (to 1,959 m−3 at Pier), respectively. Species-specific salinity tolerance explains differences in adult abundance between sampling sites whereas phenological differences among species are best explained by the influence of species-specific thermal windows and prey requirements supporting survival and egg production. Multiple intrinsic and extrinsic (environmental) factors influence the production of different egg types (normal and resting), regulate life-history strategies and influence match–mismatch dynamics.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...