GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 11
    Publication Date: 2019-07-17
    Description: Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahighresolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores’ chemical signature by non-destructive X-ray fluorescence (XRF)core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24:52.3°N; 62:59.9°E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution)and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student’s t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error’s underestimation by applying c2-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultrahigh resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-04-29
    Description: Cruise Leg SO272 with RV SONNE, leaving Port Louis, Mauritius, on January 11 2020, returning to Cape Town, South Africa, on March 4 2020, comprised seismic reflection studies and geological sampling of the Kerguelen Plateau in the southern part of the Indian Ocean. The Kerguelen Plateau rises up 2000 m above the surrounding seafloor and hence forms an obstacle for the flow of the Antarctic Circumpolar Current (ACC) and the Antarctic Bottomwater (AABW). The ACC is strongly deviated in its flow towards the north. A branch of the AABW flows northwards along the eastern flank of the plateau thereby shaping sediment drifts. A detailed study and analysis of the structure of the Labuan Basin and the central Kerguelen Plateau via seismic data and a correlation with results from DSP Leg 120 Sites 748, 750, and 751 was needed to supply information on the Cretaceous and Tertiary development of the AABW and its influence on the path of the Antarctic Circumpolar Current, This in turn will allow conclusions on the development of the East Antarctic Ice Sheet. Seismic profiles were gathered, which capture the structure of the Labuan Basin and the Kerguelen Plateau to basement and image sediment drifts. In total ~4000 km of high resolution seismic reflection data were recorded. Bathymetric and Parasound data were recorded parallel to the seismic profiling. To complement the seismic studies and provide ages of the outcropping sediment geological samples were retrieved at 11 locations using a gravity corer and multi-corer. Both datasets will form the base for an IODP proposal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-05-05
    Description: Kerguelen Plateau (KP), one of the world’s largest Large Igneous Provinces, is located in a key region in the southern Indian Ocean. Its complex topography has a strong influence on pathways of water masses within the Antarctic Circumpolar Current (ACC) and the Antarctic Bottom Water (AABW). Thick sediment packages deposited on top and around KP are a high-fidelity recorders of significant modifications in pathways and intensities of water masses flowing across the KP during the Cenozoic. Already the previously ODP spot cored sedimentary sequences demonstrated their outstanding potential as a far-field monitor for the evolution of the Antarctic Ice Sheet, for the climate variability in the Warmhouse World of the middle to late Eocene, for changes in ocean circulation, and for migration of the Polar Frontal System. Here we propose to revisited KP and recover a complete, multiple-hole drilled, carbonate rich sedimentary successions from Labuan and Ragatt Basin area by an IODP Expedition. Only high-quality drilled, undisturbed new material will allow studying the interaction of climatic and tectonic changes of the last 66 million years and provide important information on the formation and dynamics of the Antarctic ice sheet due to the unique location of the KP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-10-26
    Description: Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
    Description: Published
    Description: 1383–1387
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-06-08
    Description: The Paleocene-Eocene Thermal Maximum (PETM) was an abrupt and extreme warming event associated with rapid input of light carbon into the ocean-atmosphere system. The carbon cycle perturbations during the PETM caused significant changes to marine plankton, including extinction of some benthic foraminifers and the appearance of malformed calcareous nannoplankton, possibly related to ocean acidification during the event. The PETM is now considered a potential analog for the effects of anthropogenic climate change due to its rapid onset; thus, study of PETM records offers an opportunity to better understand the potential effects of rapid climate change on marine phytoplankton communities. Here we present calcareous nannofossil assemblage data across a newly recovered PETM section from International Ocean Discovery Program (IODP) Site U1580, drilled on the central Agulhas Plateau during IODP Expedition 392 in early 2022. Present water depth at this site is 2560 m and it sits at 40° 47.15’S, although the site has moved progressively northward since the Agulhas Plateau formed in the mid-Cretaceous, when the site was located about 20° further south. The PETM interval was identified during the expedition by a change in sediment color, increase in magnetic susceptibility, and calcareous nannofossil assemblages. Low-resolution bulk 13C measurements conducted following the expedition confirm a negative isotope excursion and decrease in calcium carbonate content across the interval. The shipboard age model based on nannofossil and planktonic foraminifer biostratigraphy, together with magnetostratigraphy, suggests relatively high sedimentation rates (~2.5 cm/kyr). Nannofossil assemblages are quite well preserved, with PETM-specific taxa present including Rhomboaster calcitrapa, Rhomboaster cuspis, Rhomboaster bramlettei, Discoaster araneus, and Discoaster acutus. Initial qualitative analyses indicate Zygrhablithus bijugatus is particularly abundant within the PETM interval, whereas Fasciculithus spp. decrease in abundance. Discoaster spp. are also more abundant in the earliest Eocene, as are Neochiastozygus spp. Neococcolithes spp., and Ellipsolithus bollii. The position of this new site between Maud Rise Site 690 and Walvis Ridge Sites 1262, 1263, and 1265 should shed new light on this event in the southern mid-latitudes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-06-08
    Description: International Ocean Discovery Program (IODP) Expedition 392 cored three sites on the Agulhas Plateau and one site in the Transkei Basin to address questions regarding the origin and timing of emplacement of Agulhas Plateau, as well as examine Southern Ocean climate history and opening of oceanic gateways from the Cretaceous through the Paleogene. Age models for the sites rely primarily on calcareous nannofossils and magnetostratigraphy, with dinoflagellates providing key events for some intervals, and additional contributions from planktonic foraminifers and diatoms. Site U1579, located in a basin on southern the central Agulhas Plateau, records a nearly continuous section dated to the Santonian to earliest Miocene. Dinoflagellates provide age control for the zeolitic sandstone and siltstone with glauconite at the base of the cored section. Above this, nannofossils are common to abundant and moderately preserved in upper Santonian to Maastrichtian calcareous chalks and the assemblages show Southern Ocean affinities. Paleogene nannofossils are abundant and moderately to well preserved. Sedimentation rates were lowest in the Eocene, which includes either condensed intervals or hiatuses. Nannofossils are well preserved in the Oligocene and assemblages consist of primarily mid-latitude species with occasional incursions of cold-water taxa. Site U1580 is also located on the southern Agulhas Plateau adjacent to a basement high. This site records several unconformities, and the lowermost part of the cored interval is interspersed with basalt layers interpreted as sills. The oldest sediment is likely uppermost Cenomanian in age. Overlying the shallowest basalt is Coniacian–Santonian silt- and sandstone with varying proportions of zeolites, glauconite, and carbonate. Sedimentation rates were very high (~10 cm/ky) during this time. Much of the early Campanian and mid-Maastrichtian is missing at this site. Paleocene nannofossils are moderately well preserved and suggest a continuous section with sedimentation rates of 1.5 cm/ky. Sedimentation rates increased in the late Paleocene to early Eocene, and nannofossils are quite well preserved through the Paleocene-Eocene Thermal Maximum and in the lower Eocene chalk/ooze. Site U1581 in the Transkei Basin includes a thick section of upper Campanian to Maastrichtian mudstone with occasional sandstone beds. Nannofossil are sparse but very well preserved through much of this interval, although preservation decreases with depth, concomitant with increasing siderite. The Cretaceous assemblages include both Southern Ocean and mid-latitude taxa. Reworking is common throughout the Cenozoic and this interval is also interspersed with hiatuses, especially in the Eocene and Miocene. Sedimentation appears to be more continuous from the latest Miocene to present, with sedimentation rates of ~2.8 cm/ky. Site U1582, cored on the northern Agulhas Plateau, includes only ~40 m of ooze and siliciclastic sediments overlying basement. Manganese nodules are common and the section is highly condensed, with at least 70 Myr represented. Future work will refine the age models for each site to provide a framework for the paleoclimatic and paleoceanographic studies planned by the expedition science party members.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-06-21
    Description: The Kerguelen Plateau, southern Indian Ocean rises up 2000 m above the surrounding seafloor and hence forms an obstacle for the flow of the Antarctic Circumpolar Current (ACC) and the Antarctic Bottomwater (AABW). The ACC is strongly deviated in its flow towards the north. A branch of the AABW flows northwards along the eastern flank of the plateau and in its path is steered by several basement highs and William’s Ridge. Seismic data collected during RV Sonne cruise SO272 image sediment drifts shaped in the Labuan Basin, which document onset and variabilities in pathway and intensity of this AABW branch in relation to the development of the Antarctic ice sheet and tectonic processes, e.g., the opening of the Tasman gateway. The eastern flank of the Kerguelen shows strong erosion of the post-mid Eocene sequences. In places, the Paleocene/early Eocene sequences are also affected by thinning and erosion. A moat can be observed along the Kerguelen Plateau flank indicating the flowpath of the north setting AAWB branch. Sediment drifts and sediment waves are formed east of the moat. Similar features are observed at the inner, western flank of William’s Ridge thus outlining the recirculation of the AABW branch in the Labuan Basin. The chronological and spatial will be reconstructed via the analysis of those sedimentary structures to provide constraints on climate and ocean circulation variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-06-21
    Description: Previous scientific ocean drilling expeditions have revealed that sediments deposited in the Kerguelen Plateau region have the potential to provide an out-standing chronicle of regional and global climate changes. In particular, this area is an excellent location to monitor subantarctic and high-latitude climate dynamics and obtain far-field information documenting Antarctic climate history in a world warmer than today. Here we report first results from site survey RV Sonne cruise SO272 that sailed January 11 to March 4 2020 from Port Louis, Mauritius, to Cape Town, South Africa. During the cruise ~4000 km of high resolution seismic reflection data were recorded along 18 seismic profiles across the central and southern Kerguelen Plateau. At 11 stations sediment cores with recoveries of up to 10m were retrieved [GU1] to complement the seismic studies and provide ages of the outcropping sediment at the sea floor. Three gravity cores targeted the Labuan Basin recovering Plio-Pleistocene diatom ooze with drop stones and rhythmic changes in reflectance. Eight gravity cores targeted the Raggatt Basin with the main objective to penetrate through the upper undifferentiated layer of surface sediment and probe the below much older outcropping sediment. Carbonate rich sediments were successfully retrieved at three locations with microfossil assemblages of late Eocene age. X-ray fluorescence core scanning, benthic stable isotope and bio-stratigraphic data will be presented. Seismic and geological datasets will form the base for an IODP full proposal to drill a complete Miocene to Paleocene high latitude sediment package, build upon the #983-Pre IODP proposal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-06-21
    Description: The Kerguelen Plateau, southern Indian Ocean rises up 2000 m above the surrounding seafloor and hence forms an obstacle for the flow of the Antarctic Circumpolar Current (ACC) and the Antarctic Bottomwater (AABW). The ACC is strongly deviated in its flow towards the north. A branch of the AABW flows northwards along the eastern flank of the plateau and in its path is steered by several basement highs and William’s Ridge. Seismic data collected during RV Sonne cruise SO272 image sediment drifts shaped in the Labuan Basin, which document onset and variabilities in pathway and intensity of this AABW branch in relation to the development of the Antarctic ice sheet and tectonic processes, e.g., the opening of the Tasman gateway. The eastern flank of the Kerguelen shows strong erosion of the post-mid Eocene sequences. In places, the Paleocene/early Eocene sequences are also affected by thinning and erosion. A moat can be observed along the Kerguelen Plateau flank indicating the flow path of the north setting AAWB branch. Sediment drifts and sediment waves are formed east of the moat. Similar features are observed at the inner, western flank of William’s Ridge thus outlining the recirculation of the AABW branch in the Labuan Basin. The chronological and spatial will be reconstructed via the analysis of those sedimentary structures to provide constraints on climate and ocean circulation variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-14
    Description: The Kerguelen Plateau, southern Indian Ocean, which rises up 2000 m above the surrounding seafloor, forms an obstacle for the flow of the Antarctic Circumpolar Current (ACC) and Antarctic Bottomwater (AABW). The ACC is strongly deviated in its flow towards the north. A branch of the AABW flows northwards along the eastern flank of the plateau and in its path is steered by several basement highs and William’s Ridge. Seismic data collected during RV Sonne cruise SO272 image sediment drifts shaped in the Labuan Basin, which document onset and variabilities in pathway and intensity of this AABW branch in relation to the development of the Antarctic ice sheet and tectonic processes, e.g., the opening of the Tasman gateway. The eastern flank of the Kerguelen further shows strong erosion of the post-mid Eocene sequences. In places, the Paleocene/early Eocene sequences are also affected by thinning and erosion. A moat can be observed along the Kerguelen Plateau flank indicating the flow path of the north setting AAWB branch. Sediment drifts and sediment waves are formed east of the moat. Similar features are observed at the inner, western flank of William’s Ridge thus outlining the recirculation of the AABW branch in the Labuan Basin. The chronological and spatial will be reconstructed via the analysis of those sedimentary structures to provide constraints on climate and ocean circulation variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...