GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-09-23
    Description: Leg A SO251-1, Yokohama - Yokohama, 04.10.2016 - 15.10.2016, Leg B SO251-2, Yokohama - Yokohama, 18.10.2016 - 02.11.2016
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers for Young Minds, 7 (96).
    Publication Date: 2019-07-22
    Description: All around the world, beneath the seafloor, there are huge volumes of natural gas. But these are not the normal gas reservoirs that we collect to use for cooking, heating our homes, and making electricity in power stations. This gas is locked up in what we call gas hydrates. Gas hydrates are a solid form of water, rather like ice, that contains gas molecules locked up in a “cage” of water molecules. Gas hydrates are found on continental shelves around the world and in permafrost in the arctic. We are interested in gas hydrates because they could be used as a future source of natural gas. They are also important because they can cause large landslides on the seafloor, damaging offshore pipelines and cables and contributing to the formation of tsunami waves.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  Science Trends .
    Publication Date: 2020-01-09
    Description: These findings are described in the article entitled Investigating a gas hydrate system in apparent disequilibrium in the Danube Fan, Black Sea, recently published in the journal Earth and Planetary Science Letters (Earth and Planetary Science Letters 502 (2018) 1-11). This work was conducted by Jess I.T. Hillman, Ewa Burwicz, Timo Zander, Joerg Bialas, and Ingo Klaucke from GEOMAR Helmholtz Centre for Ocean Research, and Howard Feldman, Tina Drexler, and David Awwiller from the ExxonMobil Upstream Research Company.
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-02-08
    Description: Highlights • There is direct and indirect evidence for hydrate occurrence in several areas around Europe. • Hydrate is particularly widespread offshore Norway and Svalbard and in the Black Sea. • Hydrate occurrence often coincides with conventional thermogenic hydrocarbon provinces. • The regional abundance of hydrate in Europe is poorly known. Abstract Large national programs in the United States and several Asian countries have defined and characterised their marine methane hydrate occurrences in some detail, but European hydrate occurrence has received less attention. The European Union-funded project “Marine gas hydrate – an indigenous resource of natural gas for Europe” (MIGRATE) aimed to determine the European potential inventory of exploitable gas hydrate, to assess current technologies for their production, and to evaluate the associated risks. We present a synthesis of results from a MIGRATE working group that focused on the definition and assessment of hydrate in Europe. Our review includes the western and eastern margins of Greenland, the Barents Sea and onshore and offshore Svalbard, the Atlantic margin of Europe, extending south to the northwestern margin of Morocco, the Mediterranean Sea, the Sea of Marmara, and the western and southern margins of the Black Sea. We have not attempted to cover the high Arctic, the Russian, Ukrainian and Georgian sectors of the Black Sea, or overseas territories of European nations. Following a formalised process, we defined a range of indicators of hydrate presence based on geophysical, geochemical and geological data. Our study was framed by the constraint of the hydrate stability field in European seas. Direct hydrate indicators included sampling of hydrate; the presence of bottom simulating reflectors in seismic reflection profiles; gas seepage into the ocean; and chlorinity anomalies in sediment cores. Indirect indicators included geophysical survey evidence for seismic velocity and/or resistivity anomalies, seismic reflectivity anomalies or subsurface gas escape structures; various seabed features associated with gas escape, and the presence of an underlying conventional petroleum system. We used these indicators to develop a database of hydrate occurrence across Europe. We identified a series of regions where there is substantial evidence for hydrate occurrence (some areas offshore Greenland, offshore west Svalbard, the Barents Sea, the mid-Norwegian margin, the Gulf of Cadiz, parts of the eastern Mediterranean, the Sea of Marmara and the Black Sea) and regions where the evidence is more tenuous (other areas offshore Greenland and of the eastern Mediterranean, onshore Svalbard, offshore Ireland and offshore northwest Iberia). We provide an overview of the evidence for hydrate occurrence in each of these regions. We conclude that around Europe, areas with strong evidence for the presence of hydrate commonly coincide with conventional thermogenic hydrocarbon provinces.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-02-08
    Description: Hydrogeological processes influence the morphology, mechanical behavior, and evolution of subduction margins. Fluid supply, release, migration, and drainage control fluid pressure and collectively govern the stress state, which varies between accretionary and nonaccretionary systems. We compiled over a decade of published and unpublished acoustic data sets and seafloor observations to analyze the distribution of focused fluid expulsion along the Hikurangi margin, New Zealand. The spatial coverage and quality of our data are exceptional for subduction margins globally. We found that focused fluid seepage is widespread and varies south to north with changes in subduction setting, including: wedge morphology, convergence rate, seafloor roughness, and sediment thickness on the incoming Pacific plate. Overall, focused seepage manifests most commonly above the deforming backstop, is common on thrust ridges, and is largely absent from the frontal wedge despite ubiquitous hydrate occurrences. Focused seepage distribution may reflect spatial differences in shallow permeability architecture, while diffusive fluid flow and seepage at scales below detection limits are also likely. From the spatial coincidence of fluids with major thrust faults that disrupt gas hydrate stability, we surmise that focused seepage distribution may also reflect deeper drainage of the forearc, with implications for pore-pressure regime, fault mechanics, and critical wedge stability and morphology. Because a range of subduction styles is represented by 800 km of along-strike variability, our results may have implications for understanding subduction fluid flow and seepage globally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-02-08
    Description: The Hikurangi Margin off the east coast of the North Island (Te Ika-a-Māui) is a tectonically active subduction zone and the location of New Zealand’s largest gas hydrate province. Faults are internally complex volumetric zones that may play a significant role in the migration of fluids beneath the seafloor. The combined processes of deformation and fluid migration result in the formation of concentrated hydrate accumulations along accretionary ridges. It is not fully understood to what extent faults control fluid migration along the Hikurangi Margin, and whether deep-seated thrust faults provide a pathway for thermogenic gas to migrate up from sources at depth. Using 2D models based on seismic data from the region we investigated the role of thrust faults in facilitating fluid migration and contributing to the formation of concentrated gas hydrates. By altering permeability properties of the fault zones in these transient state models we can determine whether faults are required to act as fluid flow pathways. In this study we focus on two study sites offshore southern Wairarapa, using realistic yet simplified fault geometries derived from 2D seismic lines. The results of these models allow us to start to disentangle the complex relationship between fault zone structure, permeability, geometry, fluid migration and gas hydrate formation. Based on the model outputs we propose that faults act as primary pathways facilitating fluid migration and are critical in the formation of concentrated gas hydrate deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-08
    Description: Highlights • Recently acquired high-resolution seismic data and existing low-resolution industry data are presented. • Two large concentrated hydrate deposits are identified beneath Glendhu and Honeycomb ridges. • A novel method involving analysis of seismic velocity and reflectivity is used to obtain estimates of hydrate saturations. • Hydrate saturations peaks of 〉80% are estimated locally. • The main driving mechanism for hydrate accumulations is inferred to be along-strata gas migration. Abstract In the southern Hikurangi subduction margin, widespread gas hydrate accumulations are inferred based on the presence of bottom simulating reflections and recovered gas hydrate samples, mainly associated with thrust ridges. We present a detailed analysis of high- and medium-resolution seismic reflection data across Glendhu and Honeycomb ridges, two elongated four-way closure systems at the toe of the deformation wedge. High-amplitude reflections within the gas hydrate stability zone, coincident with high seismic velocities, suggest the presence of highly concentrated gas hydrate accumulations in the core regions of the anticlinal ridges. A novel method involving combined seismic velocity and reflectivity analysis and rock physics modelling is used to estimate hydrate saturations in localised areas. The effective medium model consistently predicts gas hydrate saturations of ~30% of the pore space at Glendhu Ridge and 〉60% at Honeycomb Ridge, whereas the empirical three-phases weighted equation likely underestimates the amount of gas hydrate present. We note that our estimates are dependent on the vertical resolution of the seismic data (5–14 m), and that the existence of thin layers hosting gas hydrate at higher concentrations is likely based on observations made elsewhere in similar depositional environments. A comparison between the two ridges provides insights into the evolution of thrust related anticlines at the toe of the accretionary wedge. We propose that the main driving mechanism for concentrated hydrate accumulation in the study area is along-strata gas migration. The vertical extent of these accumulations is a function of the steepness of the strata crossing the base of gas hydrate stability, and of the volume of sediments from which fluid flows into each structure. According to our interpretation, older structures situated further landward ofthe deformation front are more likely to host more extensive concentrated hydrate deposits than younger ridges situated at the deformation front and characterised by more gentle folding. The method introduced in this work is useful to retrieve quantitative estimates of gas hydrate saturations based on multi-channel seismic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-05-22
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers for Young Minds, 7 (Article 25).
    Publication Date: 2020-01-02
    Description: Did you know that we have better maps of the moon, Mars, and Venus than we do of the seafloor on Earth? Since oceans cover 71% of the Earth’s surface, understanding what the seafloor looks like, and where different processes, such as ocean currents are active, is hugely important. Mapping the seafloor helps us to work out things like where different types of fish live, where we might find resources, such as rare metals and fossil fuels, and whether there is a risk of underwater landslides happening that might cause a tsunami. Mapping the seafloor is very challenging, because we cannot use the same techniques that we would use on land. To map the deep ocean, we use a tool called a multibeam echo-sounder, which is attached to a ship or a submarine vessel.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-07
    Description: Highlights • Gas hydrate systems modelling reproduces concentrated gas hydrates indicated by high amplitude seismic reflections. • Spatially variable rates in microbial gas generation beneath the hydrate stability zone drive gas hydrate formation. • Gas migration through faults and up-dip migration through permeable layers control gas hydrate distribution within ridges. • Gas hydrate accumulation is enhanced by gas recycling, leading to the formation of concentrated gas hydrates in 〈2 Ma. Abstract Gas hydrates are widespread along convergent margins, but their distribution is highly variable. This variability has been attributed to a range of factors, such as the source of gas and the occurrence of permeable faults and porous or fractured reservoirs. We test these concepts on the Hikurangi Margin, where gas hydrate occurrences of variable character are well-documented by seismic reflection datasets and scientific drilling. We use 3D gas hydrate systems modelling to reconstruct processes of gas generation, migration and gas hydrate formation through time in two thrust ridges at the deformation front (Glendhu and Honeycomb ridges). We compare the results of scenarios using different fault and rock properties with indications for concentrated gas hydrates in reflection seismic data. Gas hydrate distributions are best reproduced by models predicting focussed gas migration through thrust faults and permeable strata. The gas is predominantly sourced from microbial generation beneath the gas hydrate stability zone (HSZ) in sedimentary troughs adjacent to the ridges and migrates up-dip as free gas. During progressive ridge deformation, gas generation shifts to the landward side of the ridges, where strata are rapidly buried, while erosion occurs at the crest of the ridges. A prominent back-thrust in the structurally more mature Glendhu Ridge diverts migrating gas into the HSZ and leads to preferential gas hydrate formation in the landward side of the ridge. Recycling of gas at the base of the HSZ during the past 2 Myrs led to an enrichment of gas hydrates, first in the center of the anticlines and then progressively more in the landward limbs. We propose that this process of diverting gas migration into the HSZ during thrust ridge formation is a common feature not only at the southern Hikurangi Margin, but in many convergent margins with high sedimentation rates and a thick accretionary wedge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...