GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 11
    Publication Date: 2017-04-04
    Description: On the Ionian Sea coast of southern Italy, spanning the transition from the Calabrian Arc to the Apennines, NE-directed motion of the thin-skinned frontal thrust belt of the Apennines toward the Apulian foreland reportedly ceased during the Early-Middle Pleistocene. The submarine extension of the frontal thrust belt is represented by the Amendolara ridge, which stretches for over 80 km to the SE beneath the Taranto Gulf. High-resolution marine geophysical data collected on the Amendolara ridge during the TEATIOCA_2011 cruise provided unequivocal constraints to assert active fault-related fold growth. Single-channel seismic (sparker) and acoustic CHIRP profiles, corroborated by multibeam mapping and shallow coring, form the novel dataset to constrain the near-bottom evolution. The new data were benchmarked to the crustal geometry by means of interpretation of existing multichannel seismic profiles.
    Description: Published
    Description: Arcavacata di Rende (CS)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Active fault-propagation folds ; Blind faults ; Seismogenic sources ; Jonian Sea ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-04-06
    Description: Very high-resolution, single channel (IKB-Seistec™) reflection profiles acquired offshore the Napoli Bay, complemented with geological and geophysical data from the literature, provide unprecedented, superb seismic imaging of the Latest Pleistocene-Holocene stratigraphic architecture of the submerged sectors Campi Flegrei and Somma-Vesuvius volcanic districts. Seismic profiles were calibrated by gravity core data and document a range of depositional systems, volcanic structures and hydrothermal features that evolved after the onset of the Last Glacial Maximum (ca. 18 ka BP) over the continental shelf on the Campania coastal zone.Seistec profiles from the Pozzuoli Bay yield high-resolution images of the shallow structure of the collapse caldera-ring fault - resurgent dome system associated with the eruption of the Neapolitan Yellow Tuff (NYT) (ca 15 ka BP) and support a working hypothesis to assess the timing and the styles of deformation of the NYT resurgent structure throughout the Latest Quaternary. Seismic images also revealed the nature of the fragile deformation of strata along the NYT ring fault system and the occurrence of hydrothermal fluids and volcanic/sub-volcanic intrusions ascending along the ring fault zone. Seismic data acquired over the continental shelf off the Somma-Vesuvius stratovolcano, display evidence of gravitational instability of sand wave deposits originated by the underwater modification of pyroclastic flows that entered the seawater after destroying the Roman city of Herculaneum during the 79 CE eruption of Vesuvius.At the Banco della Montagna, a hummocky seafloor knoll located between the Somma-Vesuvius and the Pozzuoli Bay, seismic profiles and gravity core data revealed the occurrence of a field of volcaniclastic diapirs formed by the dragging and rising up of unconsolidated pumice, as a consequence of fluid overpressure at depth associated with active degassing and fluid venting at the seafloor.
    Description: Published
    Description: 371–394
    Description: 1T. Struttura della Terra
    Description: N/A or not JCR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: The present study is focused on a morphometric analysis of high resolution multibeam data (10m, 5m and, locally, 2m resolution), that were acquired during the oceanographic TEATIOCA 2011 campaign along a sector of the Ionian margin of northern Calabria. The integration of morphometric analysis with sparker and chirp data allowed to unveil basic but robust information about: 1. hierarchy of the fault systems controlling the bathymetric evolution; 2. the interplay between tectonic and erosional processes in sea-floor modeling; 3. uplift rates; 4. tilting processes.
    Description: Published
    Description: Arcavacata di Rende (CS)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: fault modeling ; erosional marine terraces ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Morphotectonic analysis and fault numeric modeling of uplifted marine terraces along the southern half of the Taranto Gulf , between the Sibari and San Nicola plains (Fig. 1), allow us to place quantitative constraints on Middle Pleistocene-Holocene deformation in the Southern Apennines.
    Description: Published
    Description: Arcavacata di Rende (CS)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Marine terraces ; Regional uplift ; Fault propagation folds ; Fault modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-03-19
    Description: Joint analysis of multichannel seismic reflection profiles calibrated with well-logs across the northern part of the Lampedusa Plateau (central sector of the Pelagian Block, Sicily Channel), of structural data collected on Lampedusa island, and of GNSS geodetic velocities of sites on the islands and on the northern shore of the Channel, suggests that this part of the plateau forms an anticlinorium (Lampedusa Plateau Anticlinorium, LPA). The LPA developed during Paleogene to Early Miocene intraplate contraction followed by Miocene to current strike-slip deformation. It is formed by WNW-ESE striking highs and lows, which have an ~20 km average wavelength and culminate at the Lampione-Lampedusa High. These broad folds are bounded by high-angle faults with a reverse component of displacement, which cut Eocene to Lower Pliocene strata offshore, and Late Miocene strata on Lampedusa. Extensional faults, that have a bathymetric expression and are responsible for marked stratal tilting due to their listric geometry, are only found to the NE of the island and are associated to the rifting that affected the central part of the Sicily Channel in the Pliocene-Quaternary. Seismic reflection profiles show that normal fault activity peaked during the middle part of the Pliocene and strongly diminished afterward. Appraisal of recent plate motion reconstructions and of published and new structural data offshore and on-land suggest that the main growth phase of the LPA occurred during (Late Cretaceous?) Paleocene-Early Miocene ~N-S convergence between Nubia and Eurasia and associated intraplate shortening. Starting from Early Miocene, likely in response to a CCW rotation of the plate convergence direction, strike-slip deformation occurred with a ~NW-SE shortening axis and ~NE-SW extension axis. During this time span the previous contractional structures were locally reactivated in transpression. The two different strain regimes, extensional and transpressional that established since Miocene NE and W to NW of Lampedusa, respectively, still persist today as documented by geodetic velocities.
    Description: Published
    Description: 206-219
    Description: 1T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-07-31
    Description: Framed in the current geodynamics of the central Mediterranean, the Aeolian-Tindari-Letojanni fault system is part of a wider NW-SE oriented right-lateral wrench zone which accommodates diverging motion between regional-scale blocks located at the southern edge of the Calabrian Arc. In order to investigate the structural architecture and the active deformation pattern of the northern sector of this tectonic feature, structural observations on-land, high and very-high resolution seismic reflection profiles, swath bathymetry and seismological and geodetic data were merged from the Lipari-Vulcano volcanic complex (central sector of the Aeolian Islands) to the Peloritani Mountains across the Gulf of Patti. Our interpretation shows that the active deformation pattern of the study area is currently expressed by NW-SE trending, right-transtensional én-echelon fault segments whose overlapping gives rise to releasing stepover and pull-apart structures. This structural architecture has favored magma and fluid ascent and the shaping of the Lipari-Vulcano volcanic complex. Similarly, the Gulf of Patti is interpreted as an extensional relay zone between two overlapping, right-lateral NW-SE trending master faults. The structural configuration we reconstruct is also supported by seismological and geodetic data which are consistent with kinematics of the mapped faults. Notably, most of the low-magnitude instrumental seismicity occurs within the relay zones, whilst the largest historical earthquakes (1786, Mw=6.2; 1978, Mw=6.1) are located along the major fault segments.
    Description: Published
    Description: 399-417
    Description: 1T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Southern Tyrrhenian sea ; NE Sicily ; seismic reflection profiles ; structural analysis ; seismology ; GPS ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-25
    Description: Investigation of sea-level positions during the highly-dynamic Marine Isotope Stage 3 (MIS 3: 29–61 kyrs BP) proves difficult because: (i) in stable and subsiding areas, coeval coastal sediments are currently submerged at depths of few to several tens of meters below the present sea level; (ii) in uplifting areas, the preservation of geomorphic features and sedimentary records is limited due to the erosion occurred during the Last Glacial Maximum (LGM) with sea level at a depth of −130 m, followed by marine transgression that determined the development of ravinement surfaces. This study discusses previous research in the Mediterranean and elsewhere, and describes new fossiliferous marine deposits overlaying the metamorphic bedrock at Cannitello (Calabria, Italy). Radiocarbon ages of marine shells (about 43 kyrs cal BP) indicate that these deposits, presently between 28 and 30 m above sea level, formed during MIS 3.1. Elevation correction of the Cannitello outcrops (considered in an intermediate-to-far-field position with respect to the ice sheet) with the local vertical tectonic rate and Glacial Isostatic Adjustment (GIA) rate allows the proposal of a revision of the eustatic depth for this highstand. Our results are consistent with recently proposed estimates based on a novel ice sheet modelling technique
    Description: Published
    Description: 2647
    Description: 2T. Deformazione crostale attiva
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-09-27
    Description: Diagnostic morphological features (e.g., rectilinear seafloor scarps) and lateral offsets of the Upper Quaternary deposits are used to infer active faults in offshore areas. Although they deform a significant seafloor region, the active faults are not necessarily capable of producing large earthquakes as they correspond to shallow structures formed in response to local stresses. We present a multiscale approach to reconstruct the structural pattern in offshore areas and distinguish between shallow, non-seismogenic, active faults, and deep blind faults, potentially associated with large seismic moment release. The approach is based on the interpretation of marine seismic reflection data and quantitative morphometric analysis of multibeam bathymetry, and tested on the Sant’Eufemia Gulf (southeastern Tyrrhenian Sea). Data highlights the occurrence of three major tectonic events since the Late Miocene. The first extensional or transtensional phase occurred during the Late Miocene. Since the Early Pliocene, a right-lateral transpressional tectonic event caused the positive inversion of deep (〉3 km) tectonic features, and the formation of NE-SW faults in the central sector of the gulf. Also, NNE-SSW to NE-SW trending anticlines (e.g., Maida Ridge) developed in the eastern part of the area. Since the Early Pleistocene (Calabrian), shallow (〈1.5 km) NNE-SSW oriented structures formed in a left-lateral transtensional regime. The new results integrated with previous literature indicates that the Late Miocene to Recent transpressional/transtensional structures developed in an ∼E-W oriented main displacement zone that extends from the Sant’Eufemia Gulf to the Squillace Basin (Ionian offshore), and likely represents the upper plate response to a tear fault of the lower plate. The quantitative morphometric analysis of the study area and the bathymetric analysis of the Angitola Canyon indicate that NNE-SSW to NE-SW trending anticlines were negatively reactivated during the last tectonic phase. We also suggest that the deep structure below the Maida Ridge may correspond to the seismogenic source of the large magnitude earthquake that struck the western Calabrian region in 1905. The multiscale approach contributes to understanding the tectonic imprint of active faults from different hierarchical orders and the geometry of seismogenic faults developed in a lithospheric strike-slip zone orthogonal to the Calabrian Arc.
    Description: Published
    Description: 670557
    Description: 2T. Deformazione crostale attiva
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: Active tectonics ; Calabrian Arc (Italy) ; southern Tyrrhenian sea ; slab-tear fault ; high-resolution seismic data ; morphotectonic analysis ; 1905 earthquake ; seismogenic sources ; 04.07. Tectonophysics ; 04.04. Geology ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-11-08
    Description: We take the chance offered by the comment of Evelpidou and Pirazzoli (2015a) to our paper (Antonioli et al., 2015) to clarify some aspects of our work. We reinforce our statement that a present-day tidal notch is almost continuously developed along much of the central Mediterranean coast.
    Description: Published
    Description: 238-241
    Description: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...