GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Geochemical studies on the Hohonu Batholith, of the West Coast, South Island, New Zealand, have recognised two distinct but chemically related suites of mid-Cretaceous granitoids. The suites are characterised by restricted radiogenic isotopic compositions (Sr(i) = 0.7062 to 0.7085; ɛNd(i) = −4.4 to −6.1), and represent melting of a mafic lithosphere source followed by interaction with Ordovician metasediments. The two suites (Te Kinga Suite and Deutgam Suite) are distinguished by contrasting contents of Al2O3, Na2O, Sr, Ba, Eu and HREE, attributable to different residual asssemblages controlled by differing H2O contents during melting of a metabasaltic source. The relatively mafic, metaluminous, I-type Deutgam Suite represents magmas derived by dehydration melting in equilibrium with an amphibolitic (plagioclase + amphibole) residue. In contrast, the peraluminous, high silica compositions of the Te Kinga Suite were produced by melting at higher H2O contents, reducing the stability of plagioclase and resulting in a melt in equilibrium with a plagioclase-free eclogitic (garnet + amphibole) residue. Residual plagioclase during generation of the Deutgam Suite resulted in lower Al2O3, Na2O, Sr, Ba and Eu contents, whereas residual garnet during generation of the Te Kinga suite resulted in depleted HREE contents. The mid-Cretaceous granitoids of the Hohonu Batholith were generated during a period of rapid tectonic transition from crustal thickening during collision to crustal thinning and core complex formation during extension.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...