GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2012
    In:  Science Vol. 336, No. 6080 ( 2012-04-27), p. 455-458
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 336, No. 6080 ( 2012-04-27), p. 455-458
    Abstract: Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 24 ( 2016-12-15), p. 8965-8987
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 24 ( 2016-12-15), p. 8965-8987
    Abstract: Reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differences between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 17 ( 2017-09), p. 6883-6904
    Abstract: The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range caused by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2 -invariant stomatal resistance may overestimate future drying in PET-derived indices.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 13 ( 2012-07-01), p. 4621-4640
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 13 ( 2012-07-01), p. 4621-4640
    Abstract: Even in the absence of external forcing, climate models often exhibit long-term trends that cannot be attributed to natural variability. This so-called climate drift arises for various reasons including the following: perturbations to the climate system on coupling component models together and deficiencies in model physics and numerics. When examining trends in historical or future climate simulations, it is important to know the error introduced by drift so that action can be taken where necessary. This study assesses the importance of drift for a number of climate properties at global and local scales. To illustrate this, the present paper focuses on simulated trends over the second half of the twentieth century. While drift in globally averaged surface properties is generally considerably smaller than observed and simulated twentieth-century trends, it can still introduce nontrivial errors in some models. Furthermore, errors become increasingly important at smaller scales. The direction of drift is not systematic across different models or variables, as such drift is considerably reduced in the multimodel mean. Despite drift being primarily associated with ocean adjustment, it is also apparent in atmospheric variables. For example, most models have local drift magnitudes in surface air and ocean temperatures that are typically between 15% and 35% of the twentieth-century simulation trend magnitudes for 1950–2000. Below depths of 1000–2000 m, drift dominates over any forced trend in most regions. As such steric sea level is strongly affected and for some models and regions the sea level trend direction is reversed. Thus depending on the application, drift may be negligible or may make up an important part of the simulated trend.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 15 ( 2016-08-01), p. 5575-5588
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 15 ( 2016-08-01), p. 5575-5588
    Abstract: The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr)−1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observed salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. Surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 10 ( 2020-10-09), p. 4831-4843
    Abstract: Abstract. Large volcanic eruptions reaching the stratosphere have caused marked perturbations to the global climate including cooling at the Earth's surface, changes in large-scale circulation and precipitation patterns and marked temporary reductions in global ocean heat content. Many studies have investigated these effects using climate models; however, uncertainties remain in the modelled response to these eruptions. This is due in part to the diversity of forcing datasets that are used to prescribe the distribution of stratospheric aerosols resulting from these volcanic eruptions, as well as uncertainties in optical property derivations from these datasets. To improve this situation for the sixth phase of the Coupled Model Intercomparison Project (CMIP6), a two-step process was undertaken. First, a combined stratospheric aerosol dataset, the Global Space-based Stratospheric Aerosol Climatology (GloSSAC; 1979–2016), was constructed. Next, GloSSAC, along with information from ice cores and Sun photometers, was used to generate aerosol distributions, characteristics and optical properties to construct a more consistent stratospheric aerosol forcing dataset for models participating in CMIP6. This “version 3” of the stratospheric aerosol forcing has been endorsed for use in all contributing CMIP6 simulations. Recent updates to the underlying GloSSAC from version 1 to version 1.1 affected the 1991–1994 period and necessitated an update to the stratospheric aerosol forcing from version 3 to version 4. As version 3 remains the official CMIP6 input, quantification of the impact on radiative forcing and climate is both relevant and timely for interpreting results from experiments such as the CMIP6 historical simulations. This study uses two models, the Canadian Earth System Model version 5 (CanESM5) and the Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1), to estimate the difference in instantaneous radiative forcing in simulated post-Pinatubo climate response when using version 4 instead of version 3. Differences in temperature, precipitation and radiative forcings are generally found to be small compared to internal variability. An exception to this is differences in monthly temperature anomalies near 24 km altitude in the tropics, which can be as large as 3 ∘C following the eruption of Mt. Pinatubo.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2014
    In:  Nature Climate Change Vol. 4, No. 11 ( 2014-11), p. 999-1005
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 4, No. 11 ( 2014-11), p. 999-1005
    Type of Medium: Online Resource
    ISSN: 1758-678X , 1758-6798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2603450-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2012
    In:  Geophysical Research Letters Vol. 39, No. 21 ( 2012-11), p. n/a-n/a
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 39, No. 21 ( 2012-11), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Vol. 569, No. 7754 ( 2019-5), p. 59-65
    In: Nature, Springer Science and Business Media LLC, Vol. 569, No. 7754 ( 2019-5), p. 59-65
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    In: Ocean Modelling, Elsevier BV, Vol. 130 ( 2018-10), p. 79-139
    Type of Medium: Online Resource
    ISSN: 1463-5003
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 1126496-2
    detail.hit.zdb_id: 1498544-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...