GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2013
    In:  Geophysical Research Letters Vol. 40, No. 10 ( 2013-05-28), p. 2236-2241
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 40, No. 10 ( 2013-05-28), p. 2236-2241
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 19 ( 2005-10-01), p. 4013-4031
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 19 ( 2005-10-01), p. 4013-4031
    Abstract: Analyses of a 500-yr control integration with the non-flux-adjusted coupled atmosphere–sea ice–ocean model ECHAM5/Max-Planck-Institute Ocean Model (MPI-OM) show pronounced multidecadal fluctuations of the Atlantic overturning circulation and the associated meridional heat transport. The period of the oscillations is about 70–80 yr. The low-frequency variability of the meridional overturning circulation (MOC) contributes substantially to sea surface temperature and sea ice fluctuations in the North Atlantic. The strength of the overturning circulation is related to the convective activity in the deep-water formation regions, most notably the Labrador Sea, and the time-varying control on the freshwater export from the Arctic to the convection sites modulates the overturning circulation. The variability is sustained by an interplay between the storage and release of freshwater from the central Arctic and circulation changes in the Nordic Seas that are caused by variations in the Atlantic heat and salt transport. The relatively high resolution in the deep-water formation region and the Arctic Ocean suggests that a better representation of convective and frontal processes not only leads to an improvement in the mean state but also introduces new mechanisms determining multidecadal variability in large-scale ocean circulation.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Climate Vol. 20, No. 23 ( 2007-12-01), p. 5827-5841
    In: Journal of Climate, American Meteorological Society, Vol. 20, No. 23 ( 2007-12-01), p. 5827-5841
    Abstract: It is investigated how changes in the North Atlantic meridional overturning circulation (MOC) might be reliably detected within a few decades, using the observations provided by the RAPID-MOC 26°N array. Previously, detectability of MOC changes had been investigated with a univariate MOC time series exhibiting strong internal variability, which would prohibit the detection of MOC changes within a few decades. Here, a modification of K. Hasselmann’s fingerprint technique is used: (simulated) observations are projected onto a time-independent spatial pattern of natural variability to derive a time-dependent detection variable. The fixed spatial pattern of natural variability is derived by regressing the zonal density gradient along 26°N against the strength of the MOC at 26°N within the coupled ECHAM5/Max Planck Institute Ocean Model’s (MPI-OM) control climate simulation. This pattern is confirmed against the observed anomalies found between the 1957 and the 2004 hydrographic occupations of the section. Onto this fixed spatial pattern of natural variability, both the existing hydrographic observations and simulated observations mimicking the RAPID-MOC 26°N array in three realizations of the Intergovernmental Panel on Climate Change (IPCC) scenario A1B are projected. For a random observation error of 0.01 kg m−3, and only using zonal density gradients between 1700- and 3100-m depth, statistically significant detection occurs with 95% reliability after about 30 yr, in the model and climate change scenario analyzed here. Compared to using a single MOC time series as the detection variable, continuous observations of zonal density gradients reduce the detection time by 50%. For the five hydrographic occupations of the 26°N transect, none of the analyzed depth ranges shows a significant trend between 1957 and 2004, implying that there was no MOC trend over the past 50 yr.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 24 ( 2012-12-15), p. 8502-8523
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 24 ( 2012-12-15), p. 8502-8523
    Abstract: This paper investigates the impact of different ocean initialization strategies on the forecast skill of decadal prediction experiments performed with the ECHAM5/Max Planck Institute Ocean Model (MPI-OM) coupled model. The ocean initializations assimilate three-dimensional temperature and salinity anomalies from two different ocean state estimates, the ocean reanalysis of the German contribution to Estimating the Circulation and Climate of the Ocean (GECCO) and an ensemble of MPI-OM ocean experiments forced with the NCEP–NCAR atmospheric reanalysis. The results show that North Atlantic and Mediterranean sea surface temperature (SST) variations can be skillfully predicted up to a decade ahead and with greater skill than by both uninitialized simulations and persistence forecasts. The regional distribution of SST predictive skill is similar in both initialization approaches; however, higher skill is found for the NCEP hindcasts than for the GECCO hindcasts when a combination of predictive skill measures is used. Skillful predictions of surface air temperature are obtained over northwestern Europe, northern Africa, and central-eastern Asia. The North Atlantic subpolar gyre region stands out as the region with the highest predictive skill beyond the warming trend, in both SST and upper-ocean heat-content predictions. Here the NCEP hindcasts deliver the best results due to a more accurate initialization of the observed variability. The dominant mechanism for North Atlantic climate predictability is of dynamical origin and can be attributed to the initialization of the Atlantic meridional overturning circulation, thus explaining the reoccurrence of high predictive skill within the second pentad of the hindcasts experiments. The results herein demonstrate that ocean experiments forced with the observed history of the atmospheric state constitute a simple but successful alternative strategy for the initialization of skillful climate predictions over the next decade.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Physical Oceanography Vol. 42, No. 12 ( 2012-12-01), p. 2185-2205
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 42, No. 12 ( 2012-12-01), p. 2185-2205
    Abstract: This paper presents an estimate of the oceanic Lorenz energy cycle derived from a simulation forced by 6-hourly fluxes obtained from NCEP–NCAR reanalysis-1. The total rate of energy generation amounts to 6.6 TW, of which 1.9 TW is generated by the time-mean winds and 2.2 TW by the time-varying winds. The dissipation of kinetic energy amounts to 4.4 TW, of which 3 TW originate from the dissipation of eddy kinetic energy. The energy exchange between reservoirs is dominated by the baroclinic pathway and the pathway that distributes the energy generated by the time-mean winds. The former converts 0.7 to 0.8 TW mean available potential energy to eddy available potential energy and finally to eddy kinetic energy, whereas the latter converts 0.5 TW mean kinetic energy to mean available potential energy. This energy cycle differs from the atmospheric one in two aspects. First, the generation of the mean kinetic and mean available potential energy is each, to a first approximation, balanced by the dissipation. The interaction of the oceanic general circulation with mesoscale eddies is hence less crucial than the corresponding interaction in the atmosphere. Second, the baroclinic pathway in the ocean is facilitated not only by the surface buoyancy flux but also by the winds through a conversion of 0.5 TW mean kinetic energy to mean available potential energy. In the atmosphere, the respective conversion is almost absent and the baroclinic energy pathway is driven solely by the differential heating.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 12, No. 7 ( 2019-07-25), p. 3241-3281
    Abstract: Abstract. As a contribution towards improving the climate mean state of the atmosphere and the ocean in Earth system models (ESMs), we compare several coupled simulations conducted with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2) following the HighResMIP protocol. Our simulations allow to analyse the separate effects of increasing the horizontal resolution of the ocean (0.4 to 0.1∘) and atmosphere (T127 to T255) submodels, and the effects of substituting the Pacanowski and Philander (PP) vertical ocean mixing scheme with the K-profile parameterization (KPP). The results show clearly distinguishable effects from all three factors. The high resolution in the ocean removes biases in the ocean interior and in the atmosphere. This leads to the important conclusion that a high-resolution ocean has a major impact on the mean state of the ocean and the atmosphere. The T255 atmosphere reduces the surface wind stress and improves ocean mixed layer depths in both hemispheres. The reduced wind forcing, in turn, slows the Antarctic Circumpolar Current (ACC), reducing it to observed values. In the North Atlantic, however, the reduced surface wind causes a weakening of the subpolar gyre and thus a slowing down of the Atlantic meridional overturning circulation (AMOC), when the PP scheme is used. The KPP scheme, on the other hand, causes stronger open-ocean convection which spins up the subpolar gyres, ultimately leading to a stronger and stable AMOC, even when coupled to the T255 atmosphere, thus retaining all the positive effects of a higher-resolved atmosphere.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 14, No. 5 ( 2021-05-03), p. 2317-2349
    Abstract: Abstract. For the first time, we compare the effects of four different ocean vertical mixing schemes on the mean state of the ocean and atmosphere in the Max Planck Institute Earth System Model (MPI-ESM1.2). These four schemes are namely the default Pacanowski and Philander (1981) (PP) scheme, the K-profile parameterization (KPP) from the Community Vertical Mixing (CVMix) library, a recently implemented scheme based on turbulent kinetic energy (TKE), and a recently developed prognostic scheme for internal wave dissipation, energy, and mixing (IDEMIX) to replace the often assumed constant background diffusivity in the ocean interior. In this study, the IDEMIX scheme is combined with the TKE scheme (collectively called the TKE+IDEMIX scheme) to provide an energetically more consistent framework for mixing, as it does not rely on the unwanted effect of creating spurious energy for mixing. Energetic consistency can have implications on the climate. Therefore, we focus on the effects of TKE+IDEMIX on the climate mean state and compare them with the first three schemes that are commonly used in other models but are not energetically consistent. We find warmer sea surface temperatures (SSTs) in the North Atlantic and Nordic Seas using KPP or TKE(+IDEMIX), which is related to 10 % higher overflows that cause a stronger and deeper upper cell of the Atlantic meridional overturning circulation (AMOC) and thereby an enhanced northward heat transport and higher inflow of warm and saline water from the Indian Ocean into the South Atlantic. Saltier subpolar North Atlantic and Nordic Seas lead to increased deep convection and thus to the increased overflows. Due to the warmer SSTs, the extratropics of the Northern Hemisphere become warmer with TKE(+IDEMIX), weakening the meridional gradient and thus the jet stream. With KPP, the tropics and the Southern Hemisphere also become warmer without weakening the jet stream. Using an energetically more consistent scheme (TKE+IDEMIX) produces a more heterogeneous and realistic pattern of vertical eddy diffusivity, with lower diffusivities in deep and flat-bottom basins and elevated turbulence over rough topography. IDEMIX improves in particular the diffusivity in the Arctic Ocean and reduces the warm bias in the Atlantic Water layer. We conclude that although shortcomings due to model resolution determine the global-scale bias pattern, the choice of the vertical mixing scheme may play an important role for regional biases.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2016
    In:  Ocean Modelling Vol. 108 ( 2016-12), p. 1-19
    In: Ocean Modelling, Elsevier BV, Vol. 108 ( 2016-12), p. 1-19
    Type of Medium: Online Resource
    ISSN: 1463-5003
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 1126496-2
    detail.hit.zdb_id: 1498544-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2015
    In:  Ocean Modelling Vol. 86 ( 2015-02), p. 58-75
    In: Ocean Modelling, Elsevier BV, Vol. 86 ( 2015-02), p. 58-75
    Type of Medium: Online Resource
    ISSN: 1463-5003
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1126496-2
    detail.hit.zdb_id: 1498544-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2007
    In:  Journal of Geophysical Research: Biogeosciences Vol. 112, No. G4 ( 2007-12), p. n/a-n/a
    In: Journal of Geophysical Research: Biogeosciences, American Geophysical Union (AGU), Vol. 112, No. G4 ( 2007-12), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...