GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The American Journal of Cardiology, Elsevier BV, Vol. 120, No. 5 ( 2017-09), p. 809-816
    Type of Medium: Online Resource
    ISSN: 0002-9149
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2019595-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 63, No. 8 ( 2019-08)
    Abstract: The novel arylamidine T-2307 exhibits broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens. Previous studies have shown that T-2307 accumulates in yeast cells via a specific polyamine transporter and disrupts yeast mitochondrial membrane potential. Further, it has little effect on rat liver mitochondrial function. The mechanism by which T-2307 disrupts yeast mitochondrial function is poorly understood, and its elucidation may provide important information for developing novel antifungal agents. This study aimed to determine how T-2307 promotes yeast mitochondrial dysfunction and to investigate the selectivity of this mechanism between fungi and mammals. T-2307 inhibited the respiration of yeast whole cells and isolated yeast mitochondria in a dose-dependent manner. The similarity of the effects of T-2307 and respiratory chain inhibitors on mitochondrial respiration prompted us to investigate the effect of T-2307 on mitochondrial respiratory chain complexes. T-2307 particularly inhibited respiratory chain complexes III and IV not only in Saccharomyces cerevisiae but also in Candida albicans , indicating that T-2307 acts against pathogenic fungi in a manner similar to that of yeast. Conversely, T-2307 showed little effect on bovine respiratory chain complexes. Additionally, we demonstrated that the inhibition of respiratory chain complexes by T-2307 resulted in a decrease in the intracellular ATP levels in yeast cells. These results indicate that inhibition of respiratory chain complexes III and IV is a key factor for selective disruption of yeast mitochondrial function and antifungal activity.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 1995
    In:  Clinical Orthopaedics and Related Research Vol. &NA;, No. 320 ( 1995-11), p. 142???148-
    In: Clinical Orthopaedics and Related Research, Ovid Technologies (Wolters Kluwer Health), Vol. &NA;, No. 320 ( 1995-11), p. 142???148-
    Type of Medium: Online Resource
    ISSN: 0009-921X
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 1995
    detail.hit.zdb_id: 2018318-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 5721-5722
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Roentgen Ray Society ; 2002
    In:  American Journal of Roentgenology Vol. 179, No. 3 ( 2002-09), p. 664-666
    In: American Journal of Roentgenology, American Roentgen Ray Society, Vol. 179, No. 3 ( 2002-09), p. 664-666
    Type of Medium: Online Resource
    ISSN: 0361-803X , 1546-3141
    RVK:
    RVK:
    Language: English
    Publisher: American Roentgen Ray Society
    Publication Date: 2002
    detail.hit.zdb_id: 2012224-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 4602-4602
    Abstract: Recent genetic studies have revealed a number of novel gene mutations in myeloid malignancies, unmasking an unexpected role of deregulated histone modification and DNA methylation in myeloid neoplasms. However, our knowledge about the spectrum of gene mutations in myeloid neoplasms is still incomplete. So, we analyzed 50 paired tumor-normal samples of myeloid neoplasms using whole exome sequencing, among which we identified recurrent mutations involving STAG2, a core cohesin component, and two other cohesin components, including STAG1 and PDS5B. Cohesin is a multimeric protein complex which is composed of four core subunits (SMC1, SMC3, RAD21 and STAG proteins), and is engaged in cohesion of sister chromatids, DNA repair and transcriptional regulation. To extend the findings in the whole-exome analysis, an additional 534 primary samples of various myeloid neoplasms was examined for mutations and deletions in a total of 9 components of the cohesin complexes, using high-throughput sequencing and SNP arrays. In total, mutations/deletions were found in a variety of myeloid neoplasms, including AML (22/131), CMML (15/86), MDS (26/205), in a mutually exclusive manner. Cohesin mutations frequently coexisted with other common mutations in myeloid neoplasms, significantly associated with spliceosome mutations. Deep sequencing of these mutant alleles revealed that majority of the cohesin mutations existed in the major tumor populations, indicating their early origin during leukemogenesis. Next, we examined several myeloid leukemia cell lines with or without cohesin mutations for expression of each cohesin component and their chromatin-bound fractions. Interestingly, the chromatin-bound fraction of several components of cohesin was significantly reduced in cell lines having mutated or defective cohesin components, suggesting substantial loss of cohesin-bound sites on chromatin. Finally, we introduced the wild-type RAD21 allele into RAD21-mutated cell lines (Kasumi-1), which effectively suppressed the proliferation of Kasumi-1, supporting a leukemogenic role of compromised cohesin functions. Less frequent mutations of cohesin components have been described in other cancers, where impaired cohesion and consequent aneuploidy were implicated in oncogenic action. However, about half of cohesin-mutated cases in our cohort had completely normal karyotypes, suggesting that cohesin-mutated cells were not clonally selected because of aneuploidy. Of note, the number of mutations determined by our whole exome analysis was significantly higher in cohesin-mutated cases compared to non-mutated cases. Since cohesin participates in post-replicative DNA repair, this may suggest that compromised cohesin function could induce DNA hypermutability and contribute to leukemogenesis. In conclusion, our findings highlight a possible role of compromised cohesin functions in myeloid leukemogenesis. Citation Format: Ayana Kon, Lee-Yung Shih, Masashi Minamino, Masashi Sanada, Yuichi Shiraishi, Yasunobu Nagata, Kenichi Yoshida, Yusuke Okuno, Masashige Bando, Shunpei Ishikawa, Aiko Sato-Otsubo, Genta Nagae, Aiko Nishimoto, Claudia Haferlach, Daniel Nowak, Yusuke Sato, Tamara Alpermann, Teppei Shimamura, Hiroko Tanaka, Kenichi Chiba, Ryo Yamamoto, Tomoyuki Yamaguchi, Makoto Otsu, Naoshi Obara, Mamiko Sakata-Yanagimoto, Tsuyoshi Nakamaki, Ken Ishiyama, Florian Nolte, Wolf-Karsten Hofmann, Shuichi Miyawaki, Shigeru Chiba, Hiraku Mori, Hiromitsu Nakauchi, H. Phillip Koeffler, Hiroyuki Aburatani, Torsten Haferlach, Katsuhiko Shirahige, Satoru Miyano, Seishi Ogawa. Recurrent pathway mutations of multiple components of cohesin complex in myeloid neoplasms. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 4602. doi:10.1158/1538-7445.AM2013-4602
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 782-782
    Abstract: Abstract 782 Recent genetic studies have revealed a number of novel gene mutations in myeloid malignancies, unmasking an unexpected role of deregulated histone modification and DNA methylation in both acute and chronic myeloid neoplasms. However, our knowledge about the spectrum of gene mutations in myeloid neoplasms is still incomplete. In the previous study, we analyzed 29 paired tumor-normal samples with chronic myeloid neoplasms with myelodysplastic features using whole exome sequencing (Yoshida et al., Nature 2011). Although the major discovery was frequent spliceosome mutations tightly associated with myelodysplasia phenotypes, hundreds of unreported gene mutations were also identified, among which we identified recurrent mutations involving STAG2, a core cohesin component, and also two other cohesin components, including STAG1 and PDS5B. Cohesin is a multimeric protein complex conserved across species and is composed of four core subunits, i.e., SMC1, SMC3, RAD21 and STAG proteins, together with several regulatory proteins. Forming a ring-like structure, cohesin is engaged in cohesion of sister chromatids in mitosis, post-replicative DNA repair and regulation of gene expression. To investigate a possible role of cohesin mutations in myeloid leukemogenesis, an additional 534 primary specimens of various myeloid neoplasms was examined for mutations in a total of 9 components of the cohesin and related complexes, using high-throughput sequencing. Copy number alterations in cohesin loci were also interrogated by SNP arrays. In total, 58 mutations and 19 deletions were confirmed by Sanger sequencing in 73 out of 563 primary myeloid neoplasms (13%). Mutations/deletions were found in a variety of myeloid neoplasms, including AML (22/131), CMML (15/86), MDS (26/205) and CML (8/65), with much lower mutation frequencies in MPN (2/76), largely in a mutually exclusive manner. In MDS, mutations were more frequent in RCMD and RAEB (19.5%) but rare in RA, RARS, RCMD-RS and 5q- syndrome (3.4%). Cohesin mutations were significantly associated with poor prognosis in CMML, but not in MDS cases. Cohesin mutations frequently coexisted with other common mutations in myeloid neoplasms, significantly associated with spliceosome mutations. Deep sequencing of these mutant alleles was performed in 19 cases with cohesin mutations. Majority of the cohesin mutations (16/19) existed in the major tumor populations, indicating their early origin during leukemogenesis. Next, we investigated a possible impact of mutations on cohesin functions, where 17 myeloid leukemia cell lines with or without cohesin mutations were examined for expression of each cohesin component and their chromatin-bound fractions. Interestingly, the chromatin-bound fraction of one or more components of cohesin was substantially reduced in cell lines having mutated or defective cohesin components, suggesting substantial loss of cohesin-bound sites on chromatin. Finally, we examined the effect of forced expression of wild-type cohesin on cell proliferation of cohesin-defective cells. Introduction of the wild-type RAD21 and STAG2 suppressed the cell growth of RAD21- (Kasumi-1 and MOLM13) and STAG2-defective (MOLM13) cell lines, respectively, supporting a leukemogenic role of compromised cohesin functions. Less frequent mutations of cohesin components have been described in other cancers, where impaired cohesion and consequent aneuploidy were implicated in oncogenic action. However, 23 cohesin-mutated cases of our cohort had completely normal karyotypes, suggesting that cohesin-mutated cells were not clonally selected because of aneuploidy. Alternatively, a growing body of evidence suggests that cohesin regulate gene expression, arguing for the possibility that cohesin mutations might participate in leukemogenesis through deregulated gene expression. Of additional note, the number of non-silent mutations determined by our whole exome analysis was significantly higher in 6 cohesin-mutated cases compared to non-mutated cases. Since cohesin also participates in post-replicative DNA repair, this may suggest that compromised cohesin function could induce DNA hypermutability and contribute to leukemogenesis. In conclusion, we report a new class of common genetic targets in myeloid malignancies, the cohesin complex. Our findings highlight a possible role of compromised cohesin functions in myeloid leukemogenesis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Equity Ownership. Alpermann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 3_suppl ( 2014-01-20), p. 283-283
    Abstract: 283 Background: Although surgical resection is the only curative treatment for pancreatic ductal adenocarcinoma (PDAC), recurrence rates are very high even if complete resection is performed. Accordingly, a new therapeutic strategy against PDAC is needed. Combination with gemcitabine and S-1 (GS) as first line chemotherapy is promising. The purpose of this study is to evaluate the feasibility and efficacy of GS for resectable and borderline PDAC in the neoadjuvant chemotherapy (NAC). Methods: This study is a prospective, multi-institutional, single-arm, phase II trial. Neoadjuvant chemotherapy with gemcitabine and S-1(NAC-GS) for resectable and borderline PDAC was performed as follows. Gemcitabine was given at a dose of 1,000 mg/m 2 on days 1 and 8 of each cycle. S-1 was administered orally at a dose of 40 mg/m 2 twice daily for the first 14 consecutive days followed by a 7-day rest. Each cycle was repeated every 21 days. The primary endpoint was the 2-year survival rate. Secondary endpoints were feasibility, resection rate, pathological effect, recurrence-free survival and tumor marker status. Results: 36 patients were enrolled between 2008 and 2010. 35 were eligible for participation in this trial. The most common toxicity was neutropenia in response to 90% of the relative dose intensity. Radiological tumor shrinkage and decreases of CA19-9 levels were seen in 69% and 89%, respectively. R0 resection rate was 87%, and the morbidity rate (40%) was acceptable. The 2-year survival rate of the total cohort was 45.7%. Patients undergoing surgical resection without distant metastases after NAC-GS (n=27) showed an increased median overall survival (34.7 months), compared with 10.0 months for resection with distant metastases or non-resection (p=0.0017). Conclusions: NAC-GS is safe and well tolerated in a multi-institutional setting. NAC-GS is encouraging patients with resectable and borderline PDAC because of better outcomes. Clinical trial information: UMIN-000001504.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Annals of Thoracic Surgery, Elsevier BV, Vol. 107, No. 5 ( 2019-05), p. 1326-1332
    Type of Medium: Online Resource
    ISSN: 0003-4975
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1499869-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2006
    In:  Clinical Orthopaedics & Related Research Vol. 447 ( 2006-06), p. 145-151
    In: Clinical Orthopaedics & Related Research, Ovid Technologies (Wolters Kluwer Health), Vol. 447 ( 2006-06), p. 145-151
    Type of Medium: Online Resource
    ISSN: 0009-921X
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2006
    detail.hit.zdb_id: 2018318-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...