GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Ecology, Wiley, Vol. 29, No. 10 ( 2020-05), p. 1860-1872
    Abstract: Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon ( Salmo salmar ) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long‐chain polyunsaturated fatty acids (LC‐PUFAs). Our aim here was to study the impact of domestication on metabolism and explore the hypothesis that the shift to VO diets has unintentionally selected for a domestication‐specific lipid metabolism. We conducted a 96‐day feeding trial of domesticated and wild salmon fed diets based on FOs, VOs or phospholipids, and compared transcriptomes and fatty acids in tissues involved in lipid absorption (pyloric caeca) and lipid turnover and synthesis (liver). Domesticated salmon had faster growth and higher gene expression in glucose and lipid metabolism compared to wild fish, possibly linked to differences in regulation of circadian rhythm pathways. Only the domesticated salmon increased expression of LC‐PUFA synthesis genes when given VOs. This transcriptome response difference was mirrored at the physiological level, with domesticated salmon having higher LC‐PUFA levels but lower 18:3n‐3 and 18:2n‐6 levels. In line with this, the VO diet decreased growth rate in wild but not domesticated salmon. Our study revealed a clear impact of domestication on transcriptomic regulation linked to metabolism and suggests that unintentional selection in the domestic environment has resulted in evolution of stronger compensatory mechanisms to a diet low in LC‐PUFAs.
    Type of Medium: Online Resource
    ISSN: 0962-1083 , 1365-294X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020749-9
    detail.hit.zdb_id: 1126687-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 315, No. 5812 ( 2007-02-02), p. 598-598
    Abstract: Both's comment questions our suggestion that the advanced spring arrival time of long-distance migratory birds in Scandinavia and the Mediterranean may reflect a climate-driven evolutionary change. We present additional arguments to support our hypothesis but underscore the importance of additional studies involving direct tests of evolutionary change.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 312, No. 5782 ( 2006-06-30), p. 1959-1961
    Abstract: Several bird species have advanced the timing of their spring migration in response to recent climate change. European short-distance migrants, wintering in temperate areas, have been assumed to be more affected by change in the European climate than long-distance migrants wintering in the tropics. However, we show that long-distance migrants have advanced their spring arrival in Scandinavia more than short-distance migrants. By analyzing a long-term data set from southern Italy, we show that long-distance migrants also pass through the Mediterranean region earlier. We argue that this may reflect a climate-driven evolutionary change in the timing of spring migration.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2006
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2004
    In:  Nature Vol. 427, No. 6976 ( 2004-2), p. 697-698
    In: Nature, Springer Science and Business Media LLC, Vol. 427, No. 6976 ( 2004-2), p. 697-698
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2004
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Ecology, Wiley, Vol. 90, No. 3 ( 2009-03), p. 699-710
    Abstract: Animals selecting habitats often have to consider many factors, e.g., food and cover for safety. However, each habitat type often lacks an adequate mixture of these factors. Analyses of habitat selection using resource selection functions (RSFs) for animal radiotelemetry data typically ignore trade‐offs, and the fact that these may change during an animal's daily foraging and resting rhythm on a short‐term basis. This may lead to changes in the relative use of habitat types if availability differs among individual home ranges, called functional responses in habitat selection. Here, we identify such functional responses and their underlying behavioral mechanisms by estimating RSFs through mixed‐effects logistic regression of telemetry data on 62 female red deer ( Cervus elaphus ) in Norway. Habitat selection changed with time of day and activity, suggesting a trade‐off in habitat selection related to forage quantity or quality vs. shelter. Red deer frequently used pastures offering abundant forage and little canopy cover during nighttime when actively foraging, while spending much of their time in forested habitats with less forage but more cover during daytime when they are more often inactive. Selection for pastures was higher when availability was low and decreased with increasing availability. Moreover, we show for the first time that in the real world with forest habitats also containing some forage, there was both increasing selection of pastures (i.e., not proportional use) and reduced time spent in pastures (i.e., not constant time use) with lowered availability of pastures within the home range. Our study demonstrates that landscape‐level habitat composition modifies the trade‐off between food and cover for large herbivorous mammals. Consequently, landscapes are likely to differ in their vulnerability to crop damage and threat to biodiversity from grazing.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, Springer Science and Business Media LLC, Vol. 456, No. 7218 ( 2008-11), p. 93-97
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2018
    In:  Applied and Environmental Microbiology Vol. 84, No. 2 ( 2018-01-15)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 84, No. 2 ( 2018-01-15)
    Abstract: Gut microbiota associations through habitat transitions are fundamentally important yet poorly understood. One such habitat transition is the migration from freshwater to saltwater for anadromous fish, such as salmon. The aim of the current work was therefore to determine the freshwater-to-saltwater transition impact on the gut microbiota in farmed Atlantic salmon, with dietary interventions resembling freshwater and saltwater diets with respect to fatty acid composition. Using deep 16S rRNA gene sequencing and quantitative PCR, we found that the freshwater-to-saltwater transition had a major association with the microbiota composition and quantity, while diet did not show significant associations with the microbiota. In saltwater there was a 100-fold increase in bacterial quantity, with a relative increase of Firmicutes and a relative decrease of both Actinobacteria and Proteobacteria . Irrespective of an overall shift in microbiota composition from freshwater to saltwater, we identified three core clostridia and one Lactobacillus -affiliated phylotype with wide geographic distribution that were highly prevalent and co-occurring. Taken together, our results support the importance of the dominating bacteria in the salmon gut, with the freshwater microbiota being immature. Due to the low number of potentially host-associated bacterial species in the salmon gut, we believe that farmed salmon can represent an important model for future understanding of host-bacterium interactions in aquatic environments. IMPORTANCE Little is known about factors affecting the interindividual distribution of gut bacteria in aquatic environments. We have shown that there is a core of four highly prevalent and co-occurring bacteria irrespective of feed and freshwater-to-saltwater transition. The potential host interactions of the core bacteria, however, need to be elucidated further.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Ecology, Wiley, Vol. 27, No. 5 ( 2018-03), p. 1200-1213
    Abstract: Atlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in freshwater. The transition to marine habitats is associated with dramatic changes in the environment, including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in physiology and metabolism occur across this life‐stage transition, but little is known about the molecular nature of these changes. Here, we use a long‐term feeding experiment to study transcriptional regulation of lipid metabolism in Atlantic salmon gut and liver in both fresh‐ and saltwater. We find that lipid metabolism becomes significantly less plastic to differences in dietary lipid composition when salmon transitions to saltwater and experiences increased dietary lipid availability. Expression of genes in liver relating to lipogenesis and lipid transport decreases overall and becomes less responsive to diet, while genes for lipid uptake in gut become more highly expressed. Finally, analyses of evolutionary consequences of the salmonid‐specific whole‐genome duplication on lipid metabolism reveal several pathways with significantly different ( p   〈  .05) duplicate retention or duplicate regulatory conservation. We also find a limited number of cases where the whole‐genome duplication has resulted in an increased gene dosage. In conclusion, we find variable and pathway‐specific effects of the salmonid genome duplication on lipid metabolism genes. A clear life‐stage‐associated shift in lipid metabolism regulation is evident, and we hypothesize this to be, at least partly, driven by nondietary factors such as the preparatory remodelling of gene regulation and physiology prior to sea migration.
    Type of Medium: Online Resource
    ISSN: 0962-1083 , 1365-294X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020749-9
    detail.hit.zdb_id: 1126687-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2015
    In:  Progress in Biophysics and Molecular Biology Vol. 117, No. 1 ( 2015-01), p. 99-106
    In: Progress in Biophysics and Molecular Biology, Elsevier BV, Vol. 117, No. 1 ( 2015-01), p. 99-106
    Type of Medium: Online Resource
    ISSN: 0079-6107
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1498578-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 10 ( 2008-03-11), p. 3811-3814
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 10 ( 2008-03-11), p. 3811-3814
    Abstract: Many species of fungi produce ephemeral autumnal fruiting bodies to spread and multiply. Despite their attraction for mushroom pickers and their economic importance, little is known about the phenology of fruiting bodies. Using ≈34,500 dated herbarium records we analyzed changes in the autumnal fruiting date of mushrooms in Norway over the period 1940–2006. We show that the time of fruiting has changed considerably over this time period, with an average delay in fruiting since 1980 of 12.9 days. The changes differ strongly between species and groups of species. Early-fruiting species have experienced a stronger delay than late fruiters, resulting in a more compressed fruiting season. There is also a geographic trend of earlier fruiting in the northern and more continental parts of Norway than in more southern and oceanic parts. Incorporating monthly precipitation and temperature variables into the analyses provides indications that increasing temperatures during autumn and winter months bring about significant delay of fruiting both in the same year and in the subsequent year. The recent changes in autumnal mushroom phenology coincide with the extension of the growing season caused by global climate change and are likely to continue under the current climate change scenario.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...