GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Optic technologies and methods/procedures are established across all areas and scales in limnic and marine research in Germany and develop further continuously. The working group “Aquatic Optic Technologies” (AOT) constitutes a common platform for knowledge transfer among scientists and users, provides a synergistic environment for the national developer community and will enhance the international visibility of the German activities in this field. This document summarizes the AOT-procedures and -techniques applied by national research institutions. We expect to initiate a trend towards harmonization across institutes. This will facilitate the establishment of open standards, provide better access to documentation, and render technical assistance for systems integration. The document consists of the parts: Platforms and carrier systems outlines the main application areas and the used technologies. Focus parameters specifies the parameters measured by means of optical methods/techniques and indicates to which extent these parameters have a socio-political dimension. Methods presents the individual optical sensors and their underlying physical methods. Similarities denominates the common space of AOT-techniques and applications. National developments lists projects and developer groups in Germany designing optical high-technologies for limnic and marine scientific purposes.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2024-02-07
    Description: Projected responses of ocean net primary productivity to climate change are highly uncertain 1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role 1–3, but this is poorly constrained by observations 4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the 〉18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Nitrate, an essential nutrient for primary production in natural waters, is optically detectable in the ultraviolet spectral region of 217–240 nm, with no chemical reagents required. Optical nitrate sensors allow monitoring at high temporal and spatial resolutions that are difficult to achieve with traditional approaches involving collection of discrete water samples followed by wet-chemical laboratory analysis. The optical nitrate measurements are however subject to matrix interferences in seawater, including bromide, at the spectral range of interest. Significant progress has been made over the last 10 years in improving data quality for seawater nitrate analysis using the ISUS and SUNA (Seabird Scientific, United States) optical sensors. Standardization of sensor calibration and data processing procedures are important for ensuring comparability of marine nitrate data reported in different studies. Here, we improved the calibration and data processing of the OPUS sensor (TriOS GmbH, Germany), and tested five OPUS sensors simultaneously deployed under identical conditions in the laboratory in terms of inter-sensor similarities and differences. We also improved the sampling interval of the OPUS to 3 s in a continuous mode by a custom-built controller, which facilitates the integration of the sensor into autonomous profiling systems. Real-time, high-resolution, in situ measurements were conducted through (1) underway surface measurements in the southeastern North Sea and (2) depth profiles on a conductivity–temperature–depth frame in the tropical Atlantic Ocean. The nitrate data computed from the optical measurements of the sensor agreed with data from discrete water samples analyzed via conventional wet-chemical methods. This work demonstrates that the OPUS sensor, with improved calibration and data processing procedures, allows in situ quantification of nitrate concentrations in dynamic coastal waters and the open ocean, with an accuracy better than ∼2 μM and short-term precision of 0.4 μM NO 3 – . The OPUS has a unique depth rating of 6,000 m and is a good and cost-effective nitrate sensor for the research community.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-14
    Description: Subterranean estuaries are connective zones between inland aquifers and the open sea where terrestrial freshwater and circulating seawater mix and undergo major biogeochemical changes. They are biogeochemical reactors that modify groundwater chemistry prior to discharge into the sea. We propose that subterranean estuaries of high-energy beaches are particularly dynamic environments, where the effect of the dynamic boundary conditions propagates tens of meters into the subsurface, leading to strong spatio-temporal variability of geochemical conditions. We hypothesize that they form a unique habitat with an adapted microbial community unlike other typically more stable subsurface environments. So far, however, studies concerning subterranean estuaries of high-energy beaches have been rare and therefore their functioning, and their importance for coastal ecosystems, as well as for carbon, nutrient and trace element cycling, is little understood. We are addressing this knowledge gap within the interdisciplinary research project DynaDeep by studying the combined effect of surface (hydro- and morphodynamics) on subsurface processes (groundwater flow and transport, biogeochemical reactions, microbiology). A unique subterranean estuary observatory was established on the northern beach of the island of Spiekeroog facing the North Sea, serving as an exemplary high-energy research site and model system. It consists of fixed and permanent infrastructure such as a pole with measuring devices, multi-level groundwater wells and an electrode chain. This forms the base for autonomous measurements, regular repeated sampling, interdisciplinary field campaigns and experimental work, all of which are integrated via mathematical modelling to understand and quantify the functioning of the biogeochemical reactor. First results show that the DynaDeep observatory is collecting the intended spatially and temporally resolved morphological, sedimentological and biogeochemical data. Samples and data are further processed ex-situ and combined with experiments and modelling. Ultimately, DynaDeep aims at elucidating the global relevance of these common but overlooked environments.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...