GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Although many of the regions on and close to the mid-ocean ridges have been extensively mapped and sampled, the abyssal intraplate regions remain essentially unsampled and unmapped, leaving huge gaps in our understanding of their geologic history and present activity. Prominent bathymetric features in these intraplate regions are fracture zones. Here we present bathymetric and sampling information from a transatlantic transect along the Vema Fracture Zone (ca. 11 °N), covering crustal ages from 109 − 0 Ma on the African plate and 0–62 Ma on the South American plate. The Vema Fracture Zone is the intraplate trace of the active Vema Transform plate boundary, which offsets the present-day Mid-Atlantic Ridge by ca. 300 km left-laterally, juxtaposing zero-age crust with crust of 20 million years age. Our results show clear evidence of tectonic activity along most of the Fracture Zone, in most places likely associated with active fluid flow. Within the active Vema Transform at crustal ages of ca. 10 Ma we found clear indications of fluid flow both in the sediments and the overlying water column. This region is 〉120 km from the nearest spreading axis and increases by almost an order of magnitude the maximum off-axis distance that active hydrothermal discharge has been found in the oceanic crust. Sampling of the igneous seafloor was possible at all crustal ages and the accretionary fabric imprinted on the plate during its production was prominent everywhere. Seafloor sediments show signs of extensive bioturbation. In one area, high concentrations of spherical Mn-nodules were also found and sampled. At the end of the transect we also mapped and sampled the Puerto Rico Trough, a 〉8000 m deep basin north of the Caribbean arc. Here the seafloor morphology is more complicated and strongly influenced by transpressive tectonics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 2 (1). pp. 1-15.
    Publication Date: 2019-09-23
    Description: Water column data of carbon and carbon-relevant parameters have been collected and merged into a new database called CARINA (CARbon IN the Atlantic). In order to provide a consistent data set, all data have been examined for systematic biases and adjusted if necessary (secondary quality control (QC)). The CARINA data set is divided into three regions: the Arctic/Nordic Seas, the Atlantic region and the Southern Ocean. Here we present the CFC data for the Atlantic region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113 as well as carbon tetrachloride (CCl4). The methods applied for the secondary quality control, a crossover analyses, the investigation of CFC ratios in the ocean and the CFC surface saturation are presented. Based on the results, the CFC data of some cruises are adjusted by a certain factor or given a “poor” quality flag.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-19
    Description: The “rugophilic”; behaviour (e.g. the preference for settling in concavities) of barnacles is well documented. In contrast, little is known about settlement preferences of other species with regard to surface microtopography. In a randomized block design, five different rugosities (smooth, 0.1 mm, 0.5 mm, 1 mm, 5 mm) were exposed to natural fouling in the Baltic Sea. In four experiments, test panels were colonized by Mytilus edulis, Polydora dliata, Balanus improvisus, diatoms, hydrozoa, bryozoa, and several ciliates. Settlement densities and microtopographical preferences for pits or elevations as a function of grain size were evaluated. Rugosities influenced settlement densities and the microtopographical preferences of almost all investigated species. Settlement densities were generally lowest on smooth panels, with most species showing distinct preferences for different rugosities. While a preference for pits was frequent, in some species the proportion of individuals settling on elevations significantly increased with roughness. These data on microtopographical preferences of different species give new insights into interactions between settlement behaviour, surface roughness, boundary layer hydrodynamics and community structure.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    157, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy
    In:  ORNL/CDIAC . 157, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, TN, USA, VII, 11 pp.
    Publication Date: 2019-10-10
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-21
    Description: More than 25% of heat-loss from the Earth's interior occurs via hydrothermal cooling of newly-formed oceanic lithosphere at mid-ocean ridges. In the process, elements (including economically-relevant base and precious metals) are re-distributed and concentrated in seafloor massive sulphide (SMS) deposits. A recent estimate1 suggested that the amount of metal being deposited at the presently-active ridges is not economically significant (with a total copper+zinc inventory equal to only one year of global copper+zinc consumption), but also highlighted the unknown potential of older seafloor, for which no viable exploration models existed. Here we present the results of hydrothermal exploration along 3000 km of the Mid-Atlantic Ridge (representing almost 5% of the total length (64.000km) of the global mid-ocean ridge system and over 8% of the economically more interesting slow-spreading (〈40mm/yr) ridges). We find significant correlations between axial morphology as determined by ship-mounted multibeam and the presence of high-temperature hydrothermal venting determined from water column studies. Using these relationships we can, for the first time, predict the location of extinct hydrothermal deposits within the plate interior solely based on ship-based multibeam surveys.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...