GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (7)
  • 1
    Publication Date: 2021-02-08
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 22 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: One hundred eighty U–Th data, including 23 isochrons on 24 pristine modern and Holocene corals and 33 seawater samples, were analyzed using sector-field mass spectrometry to understand the variability of initial 230Th/232Th (230Th/232Th0). This dataset allows us to further assess the accuracy and precision of coral 230Th dating method. By applying quality control, including careful sampling and subsampling protocols and the use of contamination-free storage and workbench spaces, the resulting low procedural blanks give an equivalent uncertainty in age of only ±0.2–0.3 yr for 1–2 g of coral sample. Using site-specific 230Th/232Th0 values or isochron techniques, our study demonstrates that corals with an age less than 100 yrs can be 230Th-dated with precisions of ±1 yr. Six living subtidal coral samples were collected from two continental shelf sites, Nanwan off southern Taiwan in the western Pacific and Son Tra off central Vietnam in the South China Sea; one coral core was drilled from an open-ocean site, Santo Island, Vanuatu, in the western tropical Pacific; and modern and fossil intertidal coral slabs, 17 in total, were cut from six sites around the islands of Simeulue, Lago, North Pagai and South Pagai of Sumatra in the eastern Indian Ocean. The results indicate that the main source of thorium is the dissolved phase of seawater, with variation of 230Th/232Th0 depending on local hydrology. With intense input of terrestrial material, low 230Th/232Th0 atomic ratios of 4.9 × 10−6 and 3.2 × 10−6 with a 10% variation are observed in Nanwan and Son Tra, respectively. At the Santo site, we find a value of 5.6 × 10−6 at 4 horizons and one high value of 24 × 10−6 in a sample from AD 1974.6 ± 0.5, likely due to the upwelling of cold water during a La Niña event between AD 1973 and 1976. The natural dynamics of 230Th/232Th0 recorded in the intertidal corals at sites in the Sumatran islands are complicated so that this value varies significantly from 3.0 to 9.4 × 10−6. Three of the 141 modern coral 230Th ages differ from their true ages by −23 to +4, indicating the presence of detrital material with anomalous 230Th/232Th values. Duplicate measurement of coeval subsamples is therefore recommended to verify the age accuracy. This improved high precision coral 230Th dating method raises the prospects of refining the age models for band-counted and tracer-tuned chronologies and of advancing coral paleoclimate research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Highlights • Novel approach to constrain past export production using Ba isotopes. • Ba isotopes improve reliability of the Ba accumulation productivity proxy. • Higher productivity during PETM recovery contributed to rapid carbon sequestration. Abstract The Paleocene–Eocene thermal maximum (PETM; ∼56 Ma) was a transient global warming event associated with a huge perturbation to the global carbon cycle. Changes in marine biological productivity may have contributed to the rapid recovery from this climate change event, by driving the burial of inorganic and organic carbon. Disagreement between proxy reconstructions, however, makes the response of biological productivity to climatic changes experienced during the PETM uncertain. Accumulation of non-detrital barium (Ba) in marine sediments is a commonly used proxy for export production. This proxy however can be compromised by artifacts resulting from dilution and changes in barite preservation, issues that have been debated for its application to sediments deposited during the PETM. Here we present a new approach to address these limitations, by combining non-detrital Ba accumulation with Ba isotope data for marine PETM sediments. Observed positive correlation between these variables is consistent with their control by local changes in export production. These results help resolve previous discrepancies between productivity reconstructions, and indicate export production at sites in the Southern Ocean and South Atlantic decreased or remained unchanged following the PETM onset, followed by an increase to maximum values in the PETM recovery period. This increase in export production coincides with elevated carbonate accumulation rates, representing an important mode of carbon sequestration. These new constraints therefore support the idea that increased production and export of calcifying nannoplankton, perhaps driven by changes in ocean stratification and/or terrestrial runoff, played an important role in rapid recovery from the PETM. This work also demonstrates the utility of sedimentary Ba isotope compositions for understanding past changes in the marine carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 473 . pp. 269-278.
    Publication Date: 2022-01-19
    Description: Barium has been used as a biogeochemical tracer for alkalinity, productivity, and riverine inputs in the ocean, but its oceanic cycle remains poorly constrained. Barium stable isotope measurements may improve the use of Ba as a tracer and better constrain the cycling of Ba, but data are only available in limited regions of the oceans. In this study, we present dissolved seawater Ba isotopic compositions in a sample collection spanning the North Atlantic, South Atlantic, North Pacific and Southern Oceans. Compiled global upper-ocean [Ba] data show a relatively constant [Ba] (35–45nM) in the near-surface waters throughout the global ocean, with the exception of areas near river inputs or strong upwelling. The relatively uniform distribution of [Ba] in the upper ocean seawater indicates that Ba removal is slow relative to supply and mixing, and implies that near-surface Ba isotope values are controlled by basin-scale balances rather than by regional or short-term processes. Seawater Ba isotopic compositions show a large variation of δ138/134Bavalues ranging from 0.24 to 0.65�, and a tight relationship with [Ba]. This global relationship can be simply modelledassuming a primary deep Southern Ocean source for Ba to yield a maximum isotope fractionation of α=1.00058 ±0.00010(α=138/134Baseawater/138/134Baparticle). This suggested isotope fractionation during Ba removal from seawater is larger than implied by laboratory measurement during barite formation, suggesting additional fractionating phases or a two-stage fractionation process. Riverine input from the Rio de la Plata to the South Atlantic has a signature of δ138/134Ba=−0.06–0.11‰, which is too light to explain the heavy values (〉0.58‰) observed in the surface open ocean. Globally, the Ba isotope composition of the upper ocean waters is correlated with the fraction of Ba utilization at the basin scale (which varies from 〈15 to 70% at sites studied here). In the deep Atlantic Ocean, distinct δ138/134Basignals in the northern-sourced (≈0.45‰) and the southern-sourced water (≈0.25‰) trace mixing and allow identification of non-conservative behaviourof Ba, reflecting additional inputs or sinks of Ba during transport (most likely addition from sediment or hydrothermal). Ba isotopes may be useful to trace such inputs in the present and past ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Trace elements play important roles as micronutrients in modulating marine productivity in the global ocean. The South Atlantic around 40° S is a prominent region of high productivity and a transition zone between the nitrate-depleted Subtropical Gyre and the iron-limited Southern Ocean. However, the sources and fluxes of trace elements to this region remain unclear. In this study, the distribution of the naturally occurring radioisotope 228Ra in the water column of the South Atlantic (Cape Basin and Argentine Basin) has been investigated along a 40° S zonal transect to estimate ocean mixing and trace element supply to the surface ocean. Ra-228 profiles have been used to determine the horizontal and vertical mixing rates in the near-surface open ocean. In the Argentine Basin, horizontal mixing from the continental shelf to the open ocean shows an eddy diffusion of Kx = 1.7 ± 1.4 (106 cm2 s−1) and an integrated advection velocity w = 0.6 ± 0.3 cm s−1. In the Cape Basin, horizontal mixing is Kx = 2.7 ± 0.8 (107 cm2 s−1) and vertical mixing Kz = 1.0–1.5 cm2 s−1 in the upper 600 m layer. Three different approaches (228Ra-diffusion, 228Ra-advection and 228Ra/TE-ratio) have been applied to estimate the dissolved trace-element fluxes from shelf to open ocean. These approaches bracket the possible range of off-shelf fluxes from the Argentine margin to be: 3.8–22 (× 103) nmol Co m−2 d−1, 7.9–20 (× 104) nmol Fe m−2 d−1 and 2.7–6.5 (× 104) nmol Zn m−2 d−1. Off-shelf fluxes from the Cape margin are: 4.3–6.2 (× 103) nmol Co m−2 d−1, 1.2–3.1 (× 104) nmol Fe m−2 d−1 and 0.9–1.2 (× 104) nmol Zn m−2 d−1. On average, at 40° S in the Atlantic, vertical mixing supplies 0.4–1.2 nmol Co m−2 d−1, 3.6–11 nmol Fe m−2 d−1, and 13–16 nmol Zn m−2 d−1 to the euphotic zone. Compared with atmospheric dust and continental shelf inputs, vertical mixing is a more important source for supplying dissolved trace elements to the surface 40° S Atlantic. It is insufficient, however, to provide the trace elements removed by biological uptake. Other inputs (e.g. particulate, or from winter deep-mixing) are required to balance the trace element budgets in this region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca 〈 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-10
    Description: Trace metals (TMs) manganese (Mn), cobalt (Co), and aluminium (Al) have important geochemical and biological roles in the ocean. Here, we present full depth profiles of dissolved (d) and particulate Al, Mn, and Co along the latitude of 40 °S in the South Atlantic Ocean from the GEOTRACES GA10 cruises that operated in austral spring 2010 and summer 2011. The region is characterized by enhanced primary productivity and forms a key transition zone between the Southern Ocean and South Atlantic Subtropical Gyre. The mean concentrations of dAl, dCo, and dMn (±standard deviation) were 3.36 ± 2.65 nmol kg−1, 35.3 ± 17.6 pmol kg−1, and 0.624 ± 1.08 nmol kg−1, respectively. Their distributions in surface waters were determined by external sources and complex internal biogeochemical processes. Specifically, surface ocean dCo was controlled by the interplay between phytoplankton uptake, remineralization and external inputs; dMn was likely determined by the formation and photoreduction of Mn-oxides; and dAl was supplied by atmospheric deposition and removed by scavenging onto particles. Fluvial and sedimentary inputs near the Rio de La Plata estuary and benthic sources from the Agulhas Bank resulted in elevated dTM concentrations in near-shore surface waters. These externally sourced dTMs were effectively delivered to the open ocean by offshore diffusion and/or advection, and potentially facilitated enhanced primary productivity along the transect. The distributions of dTMs at depth were predominantly controlled by the mixing of North Atlantic Deep Water (NADW) and waters of Antarctic origin (e.g., Upper Circumpolar Water (UCDW) and Antarctic Bottom Water (AABW)). The calculated endmember concentrations of dAl and dCo in NADW showed minor decreases in the SASTG following north–south transport, suggesting removal rates of 0.064 nM/year and 0.035–0.075 pM/year, respectively. The endmember concentration of dCo in AABW was maintained at ∼30 pmol kg−1 without evidence for scavenging removal in the Southern Ocean and SASTG (time frame 〉400 years). The concentrations of dMn in NADW and AABW were between 0.1 and 0.16 nmol kg−1, and any elevated dMn concentrations were ascribed to local external inputs (e.g., from sediments in the Argentine Basin and hydrothermal activity near the Mid-Atlantic Ridge). Hence, four controlling factors (sources, internal cycling, water mass mixing and time) need to be considered when assessing TM distributions in the global ocean, even for TMs that are vulnerable to scavenging removal processes. Because the deep waters formed in high latitude oceans are crucial components of the global thermohaline overturning system, any processes (e.g., glacier melting, upwelling and sinking, and biological activity) that impact the preformed dTM concentrations in high latitude oceans will determine the downstream dTM distributions. Therefore, the sources and sinks of TMs and associated biological activity in high latitude oceans could engender basin to global scale impacts on seawater distributions of Al, Co, and Mn and their stoichiometric relationships with macronutrients, and the global biogeochemical cycles of these scavenged-type TMs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...