GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (4)
Document type
Source
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: A dynamic energy budget (DEB) model integrating pCO2 was used to describe ocean acidification (OA) effects on Atlantic surfclam, Spisula solidissima, bioenergetics. Effects of elevated pCO2 on ingestion and somatic maintenance costs were simulated, validated, and adapted in the DEB model based upon growth and biological rates acquired during a 12-week laboratory experiment. Temperature and pCO2 were projected for the next 100 years following the intergovernmental panel on climate change representative concentration pathways scenarios (2.6, 6.0, and 8.5) and used as forcing variables to project surfclam growth and reproduction. End-of-century water warming and acidification conditions resulted in simulated faster growth for young surfclams and more energy allocated to reproduction until the beginning of the 22nd century when a reduction in maximum shell length and energy allocated to reproduction was observed for the RCP 8.5 scenario.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Experiment day; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; Laboratory experiment; Length; Mollusca; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Replicate; Salinity; Shell, dry mass; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Spisula solidissima; Temperate; Temperature, water; Tissue, dry mass; Type; Width
    Type: Dataset
    Format: text/tab-separated-values, 15872 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: As anthropogenic activities directly and indirectly increase carbon dioxide (CO2) and decrease oxygen (O2) concentrations in the ocean system, it becomes important to understand how different populations of marine animals will respond. Water that is naturally low in pH, with a high concentration of carbon dioxide (hypercapnia) and a low concentration of oxygen, occurs at shallow depths (200–500 m) in the North Pacific Ocean, whereas similar conditions are absent throughout the upper water column in the North Atlantic. This contrasting hydrography provides a natural experiment to explore whether differences in environment cause populations of cosmopolitan pelagic calcifiers, specifically the aragonitic-shelled pteropods, to have a different physiological response when exposed to hypercapnia and low O2. Using closed-chamber end-point respiration experiments, eight species of pteropods from the two ocean basins were exposed to high CO2 (  800 µatm) while six species were also exposed to moderately low O2 (48 % saturated, or  130 µmol/kg) and a combined treatment of low O2/high CO2. None of the species tested showed a change in metabolic rate in response to high CO2 alone. Of those species tested for an effect of O2, only Limacina retroversa from the Atlantic showed a response to the combined treatment, resulting in a reduction in metabolic rate. Our results suggest that pteropods have mechanisms for coping with short-term CO2 exposure and that there can be interactive effects between stressors on the physiology of these open ocean organisms that correlate with natural exposure to low O2 and high CO2. These are considerations that should be taken into account in projections of organismal sensitivity to future ocean conditions.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cavolinia inflexa; Clio pyramidata; Cuvierina atlantica; Cuvierina pacifica; Diacria trispinosa; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Limacina helicina; Limacina retroversa; Mass, standard error; Mollusca; North Atlantic; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Oxygen; Oxygen consumption, per mass; Oxygen consumption, standard error; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Replicates; Respiration; Salinity; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Styliola subula; Temperate; Temperature, water; Treatment; Type; Wet mass; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 800 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-22
    Description: Concentrations of alkalinity (TA) and dissolved inorganic carbon (DIC) in porewater as well as in surface water measured during timeseries (fixed location) and spatial surveys (fixed time period) were compiled from 38 mangrove- and 8 saltmarsh-dominated creeks and estuaries. We used data from creeks that were predominantly surrounded by mangrove or saltmarsh vegetation and with minimal confounding factors such as mixed vegetation or large catchments. These creeks were located in either pristine or anthropologically impacted estuaries or coastal areas. Anthropologically impacted areas were defined as areas that were affected by nearby urban or agricultural activities, potentially delivering pollutants, e.g., sewage or fertilizers, to creeks. We also included pristine mangrove- and saltmarsh dominated estuaries. When available, environmental parameters were also recorded, i.e., season, salinity, temperature, pH, dissolved oxygen (DO), water level, porewater tracer radon (222Rn), partial pressure of carbon dioxide (pCO2), dissolved organic carbon (DOC), particulate organic carbon (POC), nitrate and nitrite (NOx), ammonium (NH4), total nitrogen (TN), phosphate (PO4), and total phosphorus (TP). Methods used to determine parameters are explained in each corresponding reference.
    Keywords: According to source references; Alkalinity; Alkalinity, total; Alkalinity, total/Carbon, inorganic, dissolved ratio; Ammonium; Australia; Australia_M29; Australia_M30; Australia_M31; Australia_M32; Australia_M33; Australia_M34; Australia_M35; Australia_M36; Australia_M37; Australia_M38; blue carbon; Boron hydroxide; Brazil; Brazil_M18; Brazil_M19; Brazil_M20; Brazil_M21; CA_USA_S02; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbon dioxide, partial pressure; China; China_M03; China_S06; China_S07; China_S08; Condition; Country; DATE/TIME; Date/Time local; Dissolved inorganic carbon; Ecosystem; Ecuador; Ecuador_M22; Event label; French_Guiana_M17; French Guiana; GA_USA_S04; Identification; India; India_M04; India_M05; India_M06; India_M07; India_M08; India_M09; Japan; Japan_M02; Kenya; Kenya_M23; Kenya_M24; LATITUDE; LONGITUDE; MA_USA_S01; Madagascar; Madagascar_M28; mangroves; Nitrogen, total; Nitrogen oxide; Oxygen, dissolved; Palau; Palau_M15; Palau_M16; Papua_New_Guinea_M25; Papua New Guinea; pH; Philippines; Philippines_M10; Phosphate; Phosphorus, total; Radon-222; Reference/source; Salinity; saltmarshes; Sample type; SC_USA_S03; Season; Site; Spain; Spain_S05; Tanzania; Tanzania_M26; Tanzania_M27; Temperature, water; Thailand; Thailand_M14; USA; USA_M01; Vietnam; Vietnam_M11; Vietnam_M12; Vietnam_M13; Water level; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 67107 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-22
    Description: Concentrations of alkalinity (TA) and dissolved inorganic carbon (DIC) in porewater as well as in surface water measured during timeseries (fixed location) and spatial surveys (fixed time period) were compiled from 38 mangrove- and 8 saltmarsh-dominated creeks and estuaries. We used data from creeks that were predominantly surrounded by mangrove or saltmarsh vegetation and with minimal confounding factors such as mixed vegetation or large catchments. These creeks were located in either pristine or anthropologically impacted estuaries or coastal areas. Anthropologically impacted areas were defined as areas that were affected by nearby urban or agricultural activities, potentially delivering pollutants, e.g., sewage or fertilizers, to creeks. We also included pristine mangrove- and saltmarsh dominated estuaries. When available, environmental parameters were also recorded, i.e., season, salinity, temperature, pH, dissolved oxygen (DO), water level, porewater tracer radon (222Rn), partial pressure of carbon dioxide (pCO2), dissolved organic carbon (DOC), particulate organic carbon (POC), nitrate and nitrite (NOx), ammonium (NH4), total nitrogen (TN), phosphate (PO4), and total phosphorus (TP). Methods used to determine parameters are explained in each corresponding reference.
    Keywords: Alkalinity; Alkalinity, total; Alkalinity, total/Carbon, inorganic, dissolved ratio; Ammonium; Australia; Australia_M29; Australia_M30; Australia_M31; Australia_M32; Australia_M33; Australia_M34; Australia_M35; Australia_M36; Australia_M37; Australia_M38; blue carbon; Boron hydroxide; Brazil; Brazil_M18; Brazil_M19; Brazil_M20; Brazil_M21; CA_USA_S02; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbon dioxide, partial pressure; China; China_M03; China_S06; China_S07; China_S08; Condition; Country; DATE/TIME; Date/Time local; Dissolved inorganic carbon; Ecosystem; Ecuador; Ecuador_M22; Event label; French_Guiana_M17; French Guiana; GA_USA_S04; Identification; India; India_M04; India_M05; India_M06; India_M07; India_M08; India_M09; Japan; Japan_M02; Kenya; Kenya_M23; Kenya_M24; LATITUDE; LONGITUDE; MA_USA_S01; Madagascar; Madagascar_M28; mangroves; Nitrogen, total; Nitrogen oxide; Oxygen, dissolved; Palau; Palau_M15; Palau_M16; Papua_New_Guinea_M25; Papua New Guinea; pH; Philippines; Philippines_M10; Phosphate; Phosphorus, total; Radon-222; Reference/source; Salinity; saltmarshes; Sample type; SC_USA_S03; Season; Site; Spain; Spain_S05; Tanzania; Tanzania_M26; Tanzania_M27; Temperature, water; Thailand; Thailand_M14; USA; USA_M01; Vietnam; Vietnam_M11; Vietnam_M12; Vietnam_M13; Water level; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 67107 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...