GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bullock, E., Kipp, L., Moore, W., Brown, K., Mann, P., Vonk, J., Zimov, N., & Charette, M. Radium inputs into the Arctic Ocean from rivers a basin‐wide estimate. Journal of Geophysical Research: Oceans, 127(9), (2022): e2022JC018964, https://doi.org/10.1029/2022jc018964.
    Description: Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are [7.0–9.4] × 1014 dpm y−1 and [15–18] × 1014 dpm y−1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of [7.4–17] × 1015 and [15–27] × 1015 dpm y−1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone.
    Description: This study was a broad, collaborative effort that would not have been possible without contributions from numerous funding sources, including the National Science Foundation (NSF-0751525, NSF-1736277, NSF-1458305, NSF-1938873, NSF-2048067, NSF-2134865), the NERC-BMBF project CACOON [NE/R012806/1] (UKRI NERC) and BMBF-03F0806A, and an EU Starting Grant (THAWSOME-676982).
    Keywords: Radium isotopes ; Arctic Ocean ; River fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(7), (2021): e2020JG005977, https://doi.org/10.1029/2020JG005977.
    Description: Increasing Arctic temperatures are thawing permafrost soils and liberating ancient organic matter, but the fate of this material remains unclear. Thawing of permafrost releases dissolved organic matter (DOM) into fluvial networks. Unfortunately, tracking this material in Arctic rivers such as the Kolyma River in Siberia has proven challenging due to its high biodegradability. Here, we evaluate late summer abruptly thawed yedoma permafrost dissolved organic carbon (DOC) inputs from Duvannyi Yar. We implemented ultrahigh-resolution mass spectrometry alongside ramped pyrolysis oxidation (RPO) and isotopic analyses. These approaches offer insight into DOM chemical composition and DOC radiocarbon values of thermochemical components for a permafrost thaw stream, the Kolyma River, and their biodegraded counterparts (n = 4). The highly aliphatic molecular formula found in undegraded permafrost DOM contrasted with the comparatively aliphatic-poor formula of Kolyma River DOM, represented by an 8.9% and 2.6% relative abundance, respectively, suggesting minimal inputs of undegraded permafrost DOM in the river. RPO radiocarbon fractions of Kolyma River DOC exhibited no “hidden” aged component indicative of permafrost influence. Thermostability analyses suggested that there was limited biodegraded permafrost DOC in the Kolyma River, in part determined by the formation of high-activation energy (thermally stable) biodegradation components in permafrost DOM that were lacking in the Kolyma River. A mixing model based on thermostability and radiocarbon allowed us to estimate a maximum input of between 0.8% and 7.7% of this Pleistocene-aged permafrost to the Kolyma River DOC. Ultimately, our findings highlight that export of modern terrestrial DOC currently overwhelms any permafrost DOC inputs in the Kolyma River.
    Description: This work was funded by NSF grants ANT-1203885 and PLR-1500169 to R.G.M.S. The work was also supported by the National Science Foundation Division of Chemistry through DMR-1644779 and the State of Florida.
    Description: 2022-01-09
    Keywords: Permafrost ; Dissolved organic carbon ; Dissolved organic matter ; FT-ICR MS ; Ramped pyrolysis oxidation ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-27
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loranty, Michael M.; Davydov, Sergey P.; Kropp, Heather; Alexander, Heather D.; Mack, Michelle C.; Natali, Susan M.; Zimov, Nikita S. 2018. "Vegetation Indices Do Not Capture Forest Cover Variation in Upland Siberian Larch Forests." Remote Sens. 10, no. 11: 1686, doi:10.3390/rs10111686.
    Description: Boreal forests are changing in response to climate, with potentially important feedbacks to regional and global climate through altered carbon cycle and albedo dynamics. These feedback processes will be affected by vegetation changes, and feedback strengths will largely rely on the spatial extent and timing of vegetation change. Satellite remote sensing is widely used to monitor vegetation dynamics, and vegetation indices (VIs) are frequently used to characterize spatial and temporal trends in vegetation productivity. In this study we combine field observations of larch forest cover across a 25 km2 upland landscape in northeastern Siberia with high-resolution satellite observations to determine how the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are related to forest cover. Across 46 forest stands ranging from 0% to 90% larch canopy cover, we find either no change, or declines in NDVI and EVI derived from PlanetScope CubeSat and Landsat data with increasing forest cover. In conjunction with field observations of NDVI, these results indicate that understory vegetation likely exerts a strong influence on vegetation indices in these ecosystems. This suggests that positive decadal trends in NDVI in Siberian larch forests may correspond primarily to increases in understory productivity, or even to declines in forest cover. Consequently, positive NDVI trends may be associated with declines in terrestrial carbon storage and increases in albedo, rather than increases in carbon storage and decreases in albedo that are commonly assumed. Moreover, it is also likely that important ecological changes such as large changes in forest density or variable forest regrowth after fire are not captured by long-term NDVI trends.
    Description: We thank numerous undergraduate and graduate research assistants, and Polaris Project participants for field and lab assistance. We thank the staff and scientists at the Northeast Science Station for logistical and field support. Lastly, we thank the editors and six anonymous reviewers whose comments helped to improve this paper.
    Keywords: Boreal forest ; NDVI ; Phenology ; Greening ; Arctic ; Siberia ; Larch ; CubeSat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-31
    Description: Arctic river deltas and deltaic near-shore zones represent important land–ocean transition zones influencing sediment dynamics and nutrient fluxes from permafrost-affected terrestrial ecosystems into the coastal Arctic Ocean. To accurately model fluvial carbon and freshwater export from rapidly changing river catchments as well as assess impacts of future change on the Arctic shelf and coastal ecosystems, we need to understand the sea floor characteristics and topographic variety of the coastal zones. To date, digital bathymetrical data from the poorly accessible, shallow, and large areas of the eastern Siberian Arctic shelves are sparse. We have digitized bathymetrical information for nearly 75 000 locations from large-scale (1:25 000–1:500 000) current and historical nautical maps of the Lena Delta and the Kolyma Gulf region in northeastern Siberia. We present the first detailed and seamless digital models of coastal zone bathymetry for both delta and gulf regions in 50 and 200 m spatial resolution. We validated the resulting bathymetry layers using a combination of our own water depth measurements and a collection of available depth measurements, which showed a strong correlation (r〉0.9). Our bathymetrical models will serve as an input for a high-resolution coupled hydrodynamic–ecosystem model to better quantify fluvial and coastal carbon fluxes to the Arctic Ocean, but they may be useful for a range of other studies related to Arctic delta and near-shore dynamics such as modeling of submarine permafrost, near-shore sea ice, or shelf sediment transport. The new digital high-resolution bathymetry products are available on the PANGAEA data set repository for the Lena Delta (https://doi.org/10.1594/PANGAEA.934045; Fuchs et al., 2021a) and Kolyma Gulf region (https://doi.org/10.1594/PANGAEA.934049; Fuchs et al., 2021b), respectively. Likewise, the depth validation data are available on PANGAEA as well (https://doi.org/10.1594/PANGAEA.933187; Fuchs et al., 2021c).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...