GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 9 (1997), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: General Circulation Models (GCMs) are currently used to predict future global change. However, the robustness of GCMs can, and should, be evaluated by their ability to simulate past climate regimes. Their success in ‘retrodiction’ can then be assessed by reference to the testimony of the geological record. Geological evidence provides a database which can be used in the estimation of sea surface temperatures and other proxy data useful in palaeoclimatic studies. These data can then be used to refine the prescribed boundary conditions for running GCMs themselves. Results of modelling experiments confirm a generally warmer Mesozoic earth with arid tropics and convective rainfall higher over the oceans than at present. Circum-polar wetlands are also indicated. Modelled cloudiness is also higher in the Mesozoic, contributing to greenhouse conditions and possibly influencing terrestrial biomes and marine ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The uplift of the Tibetan plateau, an area that is 2,000 km wide, to an altitude of about 5,000 m has been shown to modify global climate and to influence monsoon intensity. Mechanical and thermal models for homogeneous thickening of the lithosphere make specific predictions about ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1996), S. 497-511 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A range of diagnostics from two GCM simulations, one of the present-day climate and one of the last glacial maximum (LGM) is used to gain insight into their different temperature structures and eddy dynamics. There are large local increases in baroclinicity at the LGM, especially in the Atlantic storm track, with large accompanying increases in the low level transient eddy heat flux. However, the differences in the zonal mean are much smaller, and the increases in both baroclinicity and heat flux are confined to low levels. Supplementary experiments with baroclinic wave lifecycles confirm the marked contrast between local and zonal mean behaviour, but do not adequately explain the differences between the zonal mean climates. The total flux of energy across latitude circles in the Northern Hemisphere does not change much during DJF, although its transient component is actually reduced at the LGM (during JJA the transient component is increased). Calculations of total linear eddy diffusivity reveal that changes in the time mean stationary waves are chiefly responsible for the seasonal range of this quantity at the LGM, while they only account for half the seasonal range at the present-day.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1996), S. 497-511 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. A range of diagnostics from two GCM simulations, one of the present-day climate and one of the last glacial maximum (LGM) is used to gain insight into their different temperature structures and eddy dynamics. There are large local increases in baroclinicity at the LGM, especially in the Atlantic storm track, with large accompanying increases in the low level transient eddy heat flux. However, the differences in the zonal mean are much smaller, and the increases in both baroclinicity and heat flux are confined to low levels. Supplementary experiments with baroclinic wave lifecycles confirm the marked contrast between local and zonal mean behaviour, but do not adequately explain the differences between the zonal mean climates. The total flux of energy across latitude circles in the Northern Hemisphere does not change much during DJF, although its transient component is actually reduced at the LGM (during JJA the transient component is increased). Calculations of total linear eddy diffusivity reveal that changes in the time mean stationary waves are chiefly responsible for the seasonal range of this quantity at the LGM, while they only account for half the seasonal range at the present-day.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-07
    Description: The Last Glacial Maximum (LGM, ∼ 21 000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models has been used to generate LGM simulations as part of the Paleoclimate Modelling Intercomparison Project (PMIP) contribution to the Coupled Model Intercomparison Project (CMIP). Here, we provide a preliminary analysis and evaluation of the results of these LGM experiments (PMIP4, most of which are PMIP4-CMIP6) and compare them with the previous generation of simulations (PMIP3, most of which are PMIP3-CMIP5). We show that the global averages of the PMIP4 simulations span a larger range in terms of mean annual surface air temperature and mean annual precipitation compared to the PMIP3-CMIP5 simulations, with some PMIP4 simulations reaching a globally colder and drier state. However, the multi-model global cooling average is similar for the PMIP4 and PMIP3 ensembles, while the multi-model PMIP4 mean annual precipitation average is drier than the PMIP3 one. There are important differences in both atmospheric and oceanic circulations between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large. Therefore, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land–sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the paleoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. These results point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-01
    Description: Over the last decade, our understanding of cli- mate sensitivity has improved considerably. The climate system shows variability on many timescales, is subject to non-stationary forcing and it is most likely out of equi- librium with the changes in the radiative forcing. Slow and fast feedbacks complicate the interpretation of geolog- ical records as feedback strengths vary over time. In the geological past, the forcing timescales were different than at present, suggesting that the response may have behaved differently. Do these insights constrain the climate sensitiv- ity relevant for the present day? In this paper, we review the progress made in theoretical understanding of climate sensitivity and on the estimation of climate sensitivity from proxy records. Particular focus lies on the background state dependence of feedback processes and on the impact of tipping points on the climate system. We suggest how to further use palaeo data to advance our understanding of the currently ongoing climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...