GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 437 (2005): 681-686, doi:10.1038/nature04095.
    Description: The surface ocean is everywhere saturated with respect to calcium carbonate (CaCO3). Yet increasing atmospheric CO2 reduces ocean pH and carbonate ion concentrations [CO32−] and thus the level of saturation. Reduced saturation states are expected to affect marine calcifiers even though it has been estimated that all surface waters will remain saturated for centuries. Here we show, however, that some surface waters will become undersaturated within decades. When atmospheric CO2 reaches 550 ppmv, in year 2050 under the IS92a business-as-usual scenario, Southern Ocean surface waters begin to become undersaturated with respect to aragonite, a metastable form of CaCO3. By 2100 as atmospheric CO2 reaches 788 ppmv, undersaturation extends throughout the entire Southern Ocean (〈 60°S) and into the subarctic Pacific. These changes will threaten high-latitude aragonite secreting organisms including cold-water corals, which provide essential fish habitat, and shelled pteropods, an abundant food source for marine predators.
    Description: All but the climate simulations were made as part of the OCMIP project, which was launched in 1995 by the Global Analysis, Interpretation, and Modeling (GAIM) Task Force of the International Geosphere-Biosphere Program (IGBP) with funding from NASA. OCMIP-2 was supported by the EU GOSAC project and the U.S. JGOFS SMP funded through NASA. The interannual simulation was supported by the EU NOCES project, which is part of OCMIP-3.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 2177365 bytes
    Format: 1732076 bytes
    Format: 304120 bytes
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12099, doi:10.1029/2009JC005835.
    Keywords: Modeling ; Climate ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C09013, doi:10.1029/2008JC005183.
    Description: Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).
    Description: This report was prepared by K.B.R. under awards NA17RJ2612 and NA08OAR4320752, which includes support through the NOAA Office of Climate Observations (OCO). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the U.S. Department of Commerce. Support for K.B.R. was also provided by the Carbon Mitigation Initiative (CMI) through the support of BP, Amaco, and Ford. R.M.K. was supported by NOAA grants NA17RJ2612, NA08OAR4320752, and NA08OAR4310820. F.F.P. was supported by the European Union FP6 CARBOOCEAN Integrated project (contract 51176), the French OVIDE project, and the Spanish Salvador de Madariaga program (PR2006– 0523). This work was also supported by the European NOCES project (EVK2-CT201-00134). Y.Y. and A.I. are partly supported by CREST, JST of Japan. The long-term OISO observational program in the South Indian Ocean is supported by the following three French institutes: INSU (Institut National des Sciences de l’Univers), IPSL (Institute Pierre-Simon Laplace), and IPEV (Institut Paul-Emile Victor).
    Keywords: Modeling ; Climate ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 31 (2004): L07303, doi:10.1029/2003GL018970.
    Description: New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.
    Description: K. Matsumoto was supported by NSF grants OCE-9819144 and OCE0097316.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB3017, doi:10.1029/2003GB002150.
    Description: A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25–40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.
    Description: S. Doney and K. Lindsay acknowledge support from NASA through the U.S. OCMIP program and the U.S. JGOFS Synthesis and Modeling Project (NASA grant W-19,274). The National Center for Atmospheric Research is sponsored by the National Science Foundation. N. Gruber acknowledges support from NASA grant OCEAN- 0250-0231. F. Joos and G.-K. Plattner acknowledge support by the Swiss National Science Foundation and the Swiss Federal Office of Science and Education through the EU-projects GOSAC and MilECLim and enjoyed scientific advice by T. F. Stocker, G. Delaygue, R. Knutti, and O. Marchal. European model contributions were supported by the EU GOSAC project (contract ENV4-CT97-0495). We also acknowledge support from IGBP/ GAIM to maintain the OCMIP project.
    Keywords: Global carbon models ; Ocean carbon systems ; OCMIP-2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 931-934 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The marginal stability of a static plasma with finite-Larmor-radius (FLR) effects depends on a combination of the FLR effect and the ideal magnetohydrodynamic (MHD) potential energy. For the tilt mode in a field-reversed configuration (FRC) previous computations of these two factors led to a prediction of stability for S*≤(3−5)E where S* is the macroscale parameter (separatrix radius/ion skin depth) and E is the elongation (separatrix half length/separatrix radius). This prediction explained the observed stability of most experiments. However, recent computations of actual MHD eigenfunctions indicate that the MHD growth rate has a much weaker scaling with elongation than previously believed. As a consequence, most of the long-lived, stable FRC experiments lie in the region predicted to be unstable. It appears then that the stability of FRC experiments is not explained by FLR effects in a static equilibrium. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 1842-1849 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The rotational instability of a field-reversed configuration (FRC) can be suppressed by applying a multipole magnetic field. The multipole field, however, breaks the axisymmetry and may compromise configuration. An alternative method using injected "beam'' ions would preserve the symmetry. This method is studied here within the framework of a multifluid model for which a variational principle has been developed and solved using the Rayleigh–Ritz technique. This approach leads to an analytic solution for a rigid-rotor equilibrium and allows the straightforward derivation of marginal stability conditions. This was not possible with a previous hybrid simulation which, though more complete, was cumbersome to apply. It is found that if the ratio of the rotational frequency of beam ions to that of the background ions exceeds a critical value, the radial displacement of the plasma and beam ions are opposite, and the rotational instability can be suppressed. The effect of compressibility of beam ions on the stability is also examined. The stability analysis is applied to present or near-term experimental devices and a future reactor. The beam energy and current need only be a small fraction of those of the background plasma in order to stabilize the rotational instability. These results are in qualitative agreement with previous results from a hybrid particle simulation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 29 (1986), S. 2588-2593 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: By means of the two-fluid model, the kink stability of a long thin field-reversed ion layer immersed in a dense low-temperature background plasma is studied theoretically. The two-fluid variational quadratic form with the assumption of rigid displacements in the radial direction yields a new kink stability condition that includes the effect of the nonzero real frequency of the modes, which results from the inertia of the ion layer. Although it was neglected in previous analyses, this effect is essential to explain the numerical results of Harned [Phys. Fluids 25, 1915 (1982)]. As the ratio of the density of the background plasma to that of the ion layer increases, this new kink stability condition reduces to the conventional condition. The physical mechanism for the kink instability is discussed by means of an analogy with the electrostatic two-stream instability.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 645-650 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experimental evidence is presented for a regulatory principle governing field-reversed configuration (FRC) equilibria. This leads to a form of "profile consistency'' with which the current profile exhibits a remarkable correlation with xs (the ratio of the separatrix radius to the coil radius). The proposed explanation is that these equilibria are regulated by an instability which maintains the profile at a marginally stable condition.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...