GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (80)
  • Articles  (1)
Document type
  • GEOMAR Catalogue / E-Books  (80)
  • Articles  (1)
Language
Years
RVK
  • 11
    Online Resource
    Online Resource
    Sharjah :Bentham Science Publishers,
    Keywords: Electronic books.
    Description / Table of Contents: Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 2 explains the methods used to control the remediation processes making it cost-effectively and feasible. It elaborates on the application of microbial enzymes, microalgae, and genetically engineered microorganisms in the bioremediation of significant pollutants, food wastes, distillery wastewater, and pharmaceutical wastes. This book is invaluable for researchers and scientists in environmental science, environmental microbiology, and waste management. It also serves as a learning resource for graduate and undergraduate students in environmental science, microbiology, limnology, freshwater ecology, and microbial biotechnology.
    Type of Medium: Online Resource
    Pages: 1 online resource (395 pages)
    Edition: 1st ed.
    ISBN: 9789815123524
    Series Statement: Sustainable Materials Series ; v.2
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Enzymes--Biotechnology. ; Electronic books.
    Description / Table of Contents: The book presents recent advances in the field of nanoenzymes and the immobilization of enzymes in nanomaterials.
    Type of Medium: Online Resource
    Pages: 1 online resource (270 pages)
    Edition: 1st ed.
    ISBN: 9781644901977
    Series Statement: Materials Research Foundations Series ; v.126
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Recent Advances in Enzyme Immobilization in Nanomaterials -- 1. Enzymes and their uses/ applications/ functions -- 1.2 Definition of enzyme -- 1.2 History & -- etymology of enzymes -- 1.3 Nomenclature -- 1.4 Enzyme activity -- 1.5 Sequence similarity -- 1.6 Chemical structure -- 1.6.1 Co-factor -- 1.6.2 Co-enzymes -- 1.6.3 Inhibitor -- 1.6.3.1 Competitive -- 1.6.3.2 Non-competitive -- 1.6.3.3 Uncompetitive -- 1.6.3.4 Mixed -- 1.6.3.5 Irreversible -- 1.6.4 Functions of inhibitors -- 1.7 Mechanism of enzymes working -- 1.7.1 Substrate binding -- 1.7.2 "Lock and key" model -- 1.7.3 "Induced fit" model -- 1.7.4 Catalysis -- 1.7.5 Dynamics -- 1.7.6 Substrate presentation -- 1.7.7 Allosteric modulation -- 1.8 Factor affecting enzymes activity -- 1.9 Functions -- 1.9.1 Biological functions -- 1.9.1.1 Metabolism -- 1.9.1.2 Control activity -- 1.9.1.2.1 Regulation -- 1.9.1.2.2 Post-translational modification -- 1.9.1.2.3 Quantity -- 1.9.1.2.4 Subcellular distribution -- 1.9.1.2.5 Organ specialization -- 1.9.2 Industrial applications -- 2. Different methods for enzymes immobilization in nanomaterials -- 2.1 Adsorption -- 2.2 Covalent bonding -- 2.3 Entrapment -- 2.4 Cross-linking -- 2.5 Bio-affinity interactions and other techniques -- 3. Enzymes immobilization on different nanomaterial -- 3.1 Immobilization of carbonaceous nanomaterials -- 3.2 Carbon nanotube -- 3.2.1 Graphene -- 3.2.2 Graphene oxide and reduced graphene oxide -- 3.3 Immobilization on metal/metal oxides nanomaterials -- 3.3.1 Metal nanomaterial -- 3.3.2 Metal hydroxide -- 3.3.3 Metal oxide nanomaterials -- 3.4 Immobilization of conductive polymers -- 3.5 Enzyme immobilization on other materials -- 4. Application of immobilized enzymes on nanomaterials. , 4.1 Electrochemical sensing applications of enzyme immobilized on nanomaterials -- 4.1.1 Amperometric biosensors -- 4.1.2 Potentiometric biosensors -- 4.1.2.1 Ion selective electrode -- 4.1.2.2 Enzyme field-effect transistors -- 4.1.2.3 Light addressable potentiometric sensors -- 4.1.3 Conductometry -- 4.1.4 Impedimetric enzyme biosensors -- 4.2 Fuel cell applications of enzyme immobilized on nanomaterials -- 4.3 Bio-sensor applications of enzyme immobilized on nanomaterials -- 4.4 Enzyme nanoparticles for biomedical application -- 4.4.1 Thrombolytic therapy -- 4.4.2 Oxidative stress and tnflammation therapy -- 4.4.3 Antibacterial treatment -- 4.5 Water contaminants treatment applications of enzyme immobilized on nanomaterials -- 4.5.1 Removal of emerging content -- 4.5.2 Disinfection -- 4.6 Water contaminants monitoring applications of enzyme immobilized on nanomaterials -- 4.6.1 Bacterial approach -- 4.6.2 Colorimetric approach -- 4.6.3 Electro-enzymatic approach -- 4.7 Other applications of immobilized enzymes on nanomaterials -- Conclusion -- References -- 2 -- Production, Properties and Applications of Materials-based Nano-Enzymes -- 1. Introduction -- 2. Production and properties of nanomaterial-based enzymes -- 2.1 Chemical synthesis of nanomaterial-based enzymes -- 2.2 Physical synthesis of nanomaterial-based enzymes -- 2.3 Biological synthesis of nanomaterial-based enzymes -- 2.4 Properties of nanomaterial-based enzymes -- 3. Application of nanomaterial-based enzymes in the food industry -- 3.1 Carbon-based nanomaterial enzyme biosensors -- 3.2 Zinc oxide-based nanomaterial enzyme biosensors -- 3.3 Magnetite-based nanomaterial enzyme biosensors -- 3.4 Copper cluster-based nanomaterial enzyme biosensors -- 3.5 Noble metal-based nanomaterial enzyme biosensors -- 4. Challenges and prospects -- Conclusions -- References -- 3. , Use of Nanomaterials-Based Enzymes in the Food Industry -- 1. Introduction -- 2. Nanozymes and its features -- 3. Catalytic mechanism of nanomaterials based enzymes -- 4. Nanomaterials-based enzymes for food analysis -- 4.1 Metal oxide-based -- 4.2 Metal-based nanozymes -- 4.3 Metal-organic frameworks based nanozymes -- 4.4 Molecularly imprinted polymers (MIP)-Based -- 4.5 Carbon-based nanozymes -- 5. Schemes to improve substrate specificity of nanozymes -- 6. Some other applications in the food industry -- 6.1 Intentional adulteration -- 6.2 Detection system for insecticides -- 6.3 Design for detection of gram negative bacterium -- 6.4 Detection of ethanol -- 6.5 Mycotoxins -- 6.6 Other food contaminants detection -- 6.6.1 Lipopolysaccharide (LPS) -- 6.6.2 Hydroquinone (H2Q) -- 6.6.3 Arsenic-III -- 6.6.4 Norovirus (NoV) -- Conclusion -- Acknowledgment -- References -- 4 -- Nanomaterials Supported Enzymes: Environmental Applications for Depollution of Aquatic Environments -- 1. Introduction -- 2. Enzymes -- 3. Sources of enzymes and their applications -- 4. Enzyme immobilization -- 5. Methods of Immobilization -- 5.1 Adsorption -- 5.2 Entrapment -- 5.3 Covalent binding -- 5.4 Cross-linking -- 6. Nanosupports for enzyme immobilization -- 6.1 Silica nanosupports -- 6.2 Carbon nanosupports -- 6.3 Metallic nanosupports -- 7. Applications of nanosupported enzymes in the depollution of aquatic environment -- 7.1 Water treatment applications -- 7.1.1 Eradication of emerging pollutants -- 7.1.2 Disinfection -- 7.2 Water monitoring applications -- 7.2.1 Electro-enzymatic method -- 7.2.2 Colorimetric method -- 7.2.3 Bacterial monitoring -- Conclusion and Future Perspectives -- References -- 5 -- Enzyme Immobilized Nanoparticles Towards Biosensor Fabrication -- 1. Introduction -- 2. Enzyme immobilized nanomaterials -- 2.1 Metal nanomaterials. , 2.2 Metal oxide nanomaterials -- 2.3 Carbon-derived nanomaterials -- 2.4 Polymeric nanomaterials -- 2.5 Nanocomposites -- 3. Enzyme immobilized nanomaterial-based biosensors and their applications -- 3.1 Electrochemical biosensors -- 3.2 Optical biosensors -- 3.3 Piezoelectric and gravimetric biosensor -- 3.4 Magnetic biosensors -- 4. Future perspectives -- Conclusions -- References -- 6 -- Applications of Nanoparticles-based Enzymes in the Diagnosis of Diseases -- 1.1 Nanomaterials -- 1.2 Enzymes -- 1.3 Nanomaterials supported enzymes (NSEs) -- 2. Applications of nanomaterial supported enzymes (NSEs) -- 2.1 Role of NSEs in disease diagnosis and therapeutics -- 2.2 Use of NSEs in therapeutic -- 2.3 Applications of NSEs in biofilms and tumor prevention/disruption -- 2.4 The NSEs as enzymes inhibitors -- 2.5 Enzymatic Inhibition -- 2.6 Nanozymes for Inactivation/Inhibition of SARS-CoV-2 -- 3. Role in biology and medicine -- 4. Nanozymes for sensing applications -- 5. Cancer tumor and bacterial detection -- 6. Imaging, diagnostics and biomarker monitoring -- 7. Role in HIV reactivation -- 8. Nanozymes for live cell and organelle imaging -- 9. The role of nanozymes in cardiovascular diseases (CVDS) -- 10. Diagnosis of CVDs -- 11. Applications of Nanozymes in the treatment of CVDs -- 12 The role of nanozymes in cyto-protecting -- 13. Advances of nanozymes in the neural disorders -- 14. Future prospects of NSEs -- Conclusions -- References -- 7 -- Drug Delivery using Nano-Material based Enzymes -- 1. Introduction to Nanozymes -- 2. Categorical distribution of nanozymes based on material type -- 2.1 Metal-based nanozymes -- 2.2 Fe-based nanozymes -- 2.3 Carbon-based nanozymes -- 3. Major Classes of nano-enzyme based on mode of action -- 3.1 Antioxidant nanozymes -- 3.2 Superoxide dismutase (SOD) antioxidant nanozymes -- 3.3 Pro-oxidant nanozymzes. , 4. Nanoparticles with enzyme-responsive linker -- 5. Nanozymes preparation -- 5.1 Hydrothermal method -- 5.2 Solvothermal method -- 5.3 Co-precipitation method -- 6. Development of endogenous enzyme-responsive nanomaterials -- 6.1 Synthesis of nanomaterials with enzyme-responsive core -- 6.2 Nanoparticles construction with enzyme responsive crown -- 6.3 Modification of nanomaterials with enzyme responsive linker -- 6.4 Nanoparticles and enzyme-responsive ligands -- 7. Factors affecting nanozymes activity -- 7.1 Morphology -- 7.2 Size -- 7.3 Surface modifications -- 8. Therapeutic applications of nanozymes -- 8.1 Cytoprotection -- 8.2 Nano carriers -- 8.3 Nanozymes as antibacterial, anti-inflammatory and antibiofilm agents -- 8.4 Nanomaterials based targeted drug delivery to overcome tuberculosis (TB) -- 8.5 Anti-tumor drug delivery via enzyme-responsive NPs -- 9. Limitations of nanozymes -- Conclusion -- References -- 8 -- Biomedical uses of Enzymes Immobilized by Nanoparticles -- 1. Introduction -- 2. Enzymes immobilization methods -- 3. Choice of supports -- 3.1 Entrapment -- 3.2 Crosslinking -- 3.3 Covalent attachment -- 3.4 Adsorption -- 4. Carrier bound method: general concept -- 5. Degradation of dye pollutants -- 6. Fe3O4 along with L-asparaginase -- 7. Chitin and chitosan support material for immobilization -- 7.1 Biomedical applications -- 8. Zinc oxide nano-particles -- 9. Modern applications -- 9.1 Biosensor -- 9.2 MnFe2O4@SiO2@PMIDA magnetic nanoparticles for antibody immobilization -- Conclusion -- Acknowledgment -- References -- 9 -- Use of Nanomaterials-based Enzymes in Vaccine Production and Immunization -- 1. Intrоduсtiоn -- 2. Enzymes -- 2.1 Hоw enzymes wоrk -- 2.2 Natural and Artificial Enzymes -- 3. Nаnоzymes -- 4. Nаnоzymes in vассine рrоduсtiоn аnd immunizаtiоn -- 4.1 Nаnоmаteriаl-bаsed enzymes in vассine рrоduсtiоn. , 4.1.1 Nаnоflu.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Piezoelectric materials. ; Electronic books.
    Description / Table of Contents: The book reviews our current knowledge of piezoelectric materials, including their history, developments, properties, process design, and technical applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (290 pages)
    Edition: 1st ed.
    ISBN: 9781644902097
    Series Statement: Materials Research Foundations Series ; v.131
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Types, Properties and Characteristics of Piezoelectric Materials -- 1. Introduction -- 1.1 Single crystals -- 1.2 Ceramics -- 1.3 Composites -- 1.4 Polymers -- 1.5 Sensor configuration based on shape and size -- 1.6 Classification based on dimension -- 2. Properties of piezoelectric materials -- 2.1 Basic equations -- 2.2 Curie temperature -- 2.3 Phase transition -- 2.4 High dielectric constant -- 2.5 Sensitivity -- 2.6 Electromechanical Coupling Factor (k) -- 2.7 Resistivity (R) and time constant (RC) -- 2.7 Quality factors (mechanical and electrical) -- 2.8 Figure of Merit (FOM) and strain coefficient -- 2.9 Piezoelectric resonance frequency -- 2.10 Thermal expansion -- 2.11 Ageing -- 3. Characterization of piezoelectric materials -- 3.1 Measurement of piezoelectric coefficient -- 3.2 Measurement of dielectric constant -- 3.3 Measurement of Curie temperature -- 3.4 Etching and poling -- 3.5 Measurement of hysteresis (PE/SE) loops -- Conclusions -- References -- 2 -- Fabrication Approaches for Piezoelectric Materials -- 1. Introduction -- 2. Preparation techniques for piezoelectric ceramics -- 2.1 Synthesis of ceramic powders -- 2.1 Solid-state reaction -- 2.2 Co-precipitation -- 2.3 Alkoxide hydrolysis -- 2.4 The sintering method -- 2.5 Templated grain growth -- 3. Piezoelectric materials in device fabrication -- 4. Bio-piezoelectric materials -- 4.1 Types bio-piezoelectric materials -- 4.2 Synthesis strategies -- 4.2.1 Thin films -- 4.2.2 Nanoplatforms -- 5. Challenges -- 5.1 Piezoelectric ceramics -- 5.2 Bio-piezoelectric materials -- Conclusion -- References -- 3 -- Piezoelectric Materials-based Nanogenerators -- 1. Introduction -- 2. Piezoelectricity and crystallography -- 3. Maxwell's equations and piezoelectric nanogenerator -- 4. Piezoelectric materials for nanogenerators. , 4.1 Ceramic -- 4.1.1 Zinc oxide -- 4.1.2 Barium titanate -- 4.1.3 Lead zirconate titanate (PZT) -- 4.2 Polymer -- 4.2.1 PVDF and its copolymer -- 4.2.2 Polylactic acid -- 4.2.3 Cellulose -- 4.3 Ferroelectret -- 4.4 PVDF based composite -- 4.4.1 Ceramic filler -- 4.4.2 Carbon-based filler -- 4.4.3 Metal based filler -- 4.4.4 Other fillers -- 5. Applications of piezoelectric nanogenerator -- 5.1 Power source of electronic devices -- 5.2 Sensing application -- 6. Challenges and future scopes -- Conclusions -- Acknowledgement -- References -- 4 -- Piezoelectric Materials based Phototronics -- 1. Introduction -- 1.1 Piezoelectric effect -- 1.2 Piezotronic effect -- 2. Piezo-phototronic effect -- 3. Piezoelectric semiconductor NWs -- 4. Effect on 2D materials -- 5. Effect on 3rd generation semiconductors -- 6. Piezo-phototronic effect on LED -- 7. Piezo-phototronic effect on solar cell -- 8. Piezo-phototronics in luminescence applications -- 9. Piezo-phototronics in other applications -- References -- 5 -- Piezoelectric Composites and their Applications -- 1. Introduction -- 2. The mechanism of piezoelectricity and principle of PZT-polymer composites -- 3. Piezoelectric materials -- 4 Applications of piezoelectric composite materials -- 4.1 Energy harvesting applications -- 4.2 Medical applications of piezoelectric materials -- 4.2.1 Piezoelectric medical devices -- 4.2.2 Piezoelectric sensors -- 4.2.3 Piezoelectric prosthetic skin -- 4.2.4 Cochlear implants -- 4.2.5 Piezoelectric surgery -- 4.2.6 Ultrasonic dental scaling -- 4.2.7 Microdosing -- 4.2.8 Energy harvesting -- 4.2.9 Catheter applications -- 4.2.10 Neural stimulators -- 4.2.11 Healthcare monitoring -- 5. Structural health monitoring and repair -- Conclusion -- References -- 6 -- Piezoelectric Materials for Biomedical and Energy Harvesting Applications -- 1. Introduction. , 1.1 Types of advance piezoelectric functional materials -- 1.1.1 Polymer piezocomposite -- 1.1.2 Ceramics piezocomposite -- 1.1.3 Polymer ceramics piezocomposite -- 2. Applications -- 2.1 Microelectromechanical system (MEMS) devices -- 2.2 MEMS generators for energy harvesting -- 2.3 MEMS sensor -- 2.3.1 Pressure sensor -- 2.3.2 Healthcare sensor -- 2.3.3 Cell and tisusse regenration -- Conclusion -- Reference -- 7 -- Piezoelectric Thin Films and their Applications -- 1. Piezoelectric thin films -- 2. Lead free piezoelectric thin films -- 2.1 AlN thin films -- 2.2 ZnO thin films -- 2.2.1 Synthesis of ZnO thin films -- 2.3 KNN thin films -- 2.3.1 Synthesis of KNN thin films -- 3. Characterization techniques for piezoelectric thin film -- 3.1 Resonance spectrum method -- 3.2 Pneumatic loading method and normal loading method -- 3.3 Characterizations using capacitance measurements -- 4. Applications -- 4.1 Energy harvesting -- 4.2 Actuators -- 4.3 Electronics -- 4.4 Acoustic biosensors -- 4.5 Surface acoustic wave (SAW) biosensors -- 5. Recent developments in piezoelectric thin film devices -- Conclusion -- References -- 8 -- Bulk Lead-Free Piezoelectric Perovskites and their Applications -- 1. Perovskites -- 2. Lead free perovskites -- 3. Processing of lead-free perovskites -- 4. Piezoelectricity in lead free perovskite -- 4.1 Fundamentals of piezoelectricity -- 5. Different lead-free piezoceramics and their applications -- 5.1 KNN based ceramics -- 5.2 Bismuth sodium titanate based piezoceramics and their applications -- 5.3 BaTiO3 (BT) based piezo-ceramics -- 5.3.1 BaTiO3 ceramics phase boundary -- 5.3.2 Factors in phase boundaries -- 5.3.3 Sintering and curie temperature -- 5.4 Bismuth based piezoceramics -- 5.4.1 Phase boundary in BFO-based ceramics -- 5.4.1.1 Ion substitution -- 5.4.1.2 Addition of ABO3. , 5.4.2 Temperature stability of strain properties -- 5.4.3 Relationship between piezoelectricity and phase boundaries -- 6. Requirements for piezoceramic applications -- 6.1 Actuators -- 6.2 Sensors -- 6.3 Transducers -- 6.3.1 Piezoelectric transducers -- 6.4 Resonators -- Conclusion -- References -- 9 -- Piezoelectric Materials for Sensor Applications -- 1. Introduction -- 2. Piezoelectric mechanism -- 3. Types of piezoelectric materials -- 4. Fabrication methods -- 5. Applications of piezoelectric materials -- 5.1 Applications in wearable and implanted biomedical devices -- 5.2 Piezoelectric materials for energy applications -- 5.3 Piezoelectric materials in tissue engineering -- 5.4 Piezoelectric materials in other applications -- Conclusion and outlook -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (734 pages)
    Edition: 1st ed.
    ISBN: 9789811622250
    Series Statement: Environmental and Microbial Biotechnology Series
    Language: English
    Note: Intro -- Contents -- About the Editors -- 1: Application of Endophyte Microbes for Production of Secondary Metabolites -- 1.1 Introduction -- 1.2 Origin and Evolution of Endophytes -- 1.3 Endophyte Diversity -- 1.4 Close Relationship Between Endophytes and Medicinal Herbs -- 1.5 Endophytes and Secondary Metabolites -- 1.6 Terpenoids -- 1.7 Phenolics -- 1.8 Flavonoids -- 1.9 Alkaloids -- 1.10 Glycosides -- 1.11 Saponins -- 1.12 Polyketides -- 1.13 Coumarins -- 1.14 Steroids -- 1.15 Conclusion and Perspectives -- References -- 2: Application of Microbes in Synthesis of Electrode Materials for Supercapacitors -- 2.1 Introduction -- 2.1.1 Basics of Supercapacitors -- 2.1.2 Electrode Materials for Supercapacitors -- 2.1.3 Why Microbes in Energy Storage Devices? -- 2.2 Different Microbes Commonly Used in EES -- 2.2.1 Bacteria -- What so Special About Bacterial Cellulose? -- 2.2.2 Viruses -- 2.2.3 Fungi -- 2.3 Microbes as Bio-templates for Energy Storage Materials -- 2.3.1 Bacteria as Bio-templates -- 2.3.2 Fungi as Bio-templates -- 2.3.3 Viruses as Bio-templates -- 2.4 Microbe-Based Carbon Materials as Supporting Matrix -- 2.5 Microbe-Derived Carbons for Energy Storage Applications -- 2.5.1 Bacteria-Derived Carbons for Energy storage applications -- 2.5.2 Fungi-Derived Carbons for Energy Storage Applications -- 2.5.3 Microbe-Derived Carbon-Based Nanocomposites as Energy Storage Materials -- 2.6 Conclusion and Future Prospects -- References -- 3: Application of Microbes in Climate-Resilient Crops -- 3.1 Introduction -- 3.2 Heat Stress Tolerance -- 3.3 Cold Stress Tolerance -- 3.4 Submergence Stress Tolerance -- 3.5 Salinity and Drought Stress Tolerance -- 3.6 Conclusion and Future Perspectives -- References -- 4: Application of Microbes in Biotechnology, Industry, and Medical Field -- 4.1 Overview of Microorganisms -- 4.1.1 Prokaryotic Microorganisms. , Bacteria -- Archaea -- 4.1.2 Eukaryotic Microorganisms -- Protist -- Fungi -- Virus -- 4.2 Principles -- 4.2.1 Screening for Microbial Products -- Screening Methods -- 4.2.2 Microbial Bioprocess -- Optimization -- Sustainable Technologies -- 4.2.3 Enzymology -- 4.2.4 Gene Manipulation -- Recombinant DNA Technology -- 4.3 Applications -- 4.3.1 Industry -- Food-Fermented Foods -- Improvement of Food Quality -- Improvement Efficiency and Productivity of Process -- Food Additives -- Agroindustry -- Pest in Crops -- Crop Yield and Product Quality -- Construction -- Chemical Industry -- Cleaning -- Bioremediation -- Chemical-Based Cleaning Products -- 4.3.2 Environment -- Wastewater Treatment -- Solid Hazardous Treatment -- Composting -- Anaerobic Digestion -- Metal Recovery -- Microbial Biofuels -- Biomethanol -- Bioethanol -- Butanol -- Biodiesel -- Medical Biotechnology -- 4.4 Conclusions -- References -- 5: Applications of Microbes for Energy -- 5.1 Introduction -- 5.2 Microbes for Energy Applications -- 5.2.1 Microbes for Fuel Cells -- 5.2.2 Microbes for Hydrogen Production -- 5.2.3 Microbes for Methane Production -- 5.2.4 Microbes for Ethanol Production -- 5.2.5 Microbes for Biodiesel Production -- 5.2.6 Microbes for Electrosynthesis -- 5.2.7 Microbes for Energy Storage -- 5.3 Conclusion and Future Remarks -- References -- 6: Applications of Microbes in Electric Generation -- 6.1 Introduction -- 6.2 Different BFC Types -- 6.2.1 DET-BFC -- 6.2.2 MET-BFC -- 6.2.3 EBFC -- 6.2.4 MFC -- 6.3 Electrocatalytic Nanomaterials for EBFC -- 6.3.1 Carbon Materials -- 6.3.2 Metal Nanoparticles -- 6.3.3 Composite Materials -- 6.4 Electrocatalytic Nanomaterials for MFC -- 6.4.1 Electrocatalytic Nanomaterials for MFC Anode -- Carbon Nanomaterials -- Metal Nanomaterials -- Conductive Polymers -- 6.4.2 Electrocatalytic Nanomaterials for MFC Cathode. , Noble Metal-Based Materials -- Non-noble Metal-Based Materials -- 6.5 Summary and Prospect -- References -- 7: Application of Microbes in Household Products -- 7.1 Introduction -- 7.2 Household Products -- 7.2.1 Cleaning Product -- 7.2.2 Cosmeceutical -- 7.2.3 Textiles -- 7.2.4 Others -- 7.3 Benefits and Challenges -- 7.4 Conclusion -- References -- 8: Electricity Generation and Wastewater Treatment with Membrane-Less Microbial Fuel Cell -- 8.1 Introduction -- 8.2 Electricity Generation -- 8.2.1 Anode and Cathode Electrodes -- Cathode Electrode -- Anode Electrode -- 8.2.2 Effect of Operating Temperature -- 8.2.3 Effect of pH -- 8.2.4 Effect of Substrate Pretreatment -- 8.2.5 Effect of Reactor Design -- 8.2.6 Effect of Electrode Surface Area and Electrode Spacing -- 8.2.7 Effect of Substrate Conductivity -- 8.3 Water Treatment (Substrate) -- 8.4 Conclusion -- References -- 9: Microbes: Applications for Power Generation -- 9.1 Introduction -- 9.2 Reduction of the Environmental and Air Pollution -- 9.2.1 Natural Aerosols from Vegetation -- 9.2.2 Landfill Gas -- 9.2.3 Biogas -- Using Leachate of the Waste -- 9.2.4 Biodiesel -- 9.2.5 Bioethanol -- Using Celluloses -- Using Starch -- Using Sugar -- 9.2.6 Sewer -- 9.3 Energy Efficiency -- 9.3.1 Microorganisms -- 9.3.2 Microbial Fuel Cells -- Using Natural Fermentation -- Using Biomass -- Using Domestic Wastewater -- Using Industrial Wastewater -- Using Sewage -- Using Crop Residue -- Using Mud -- Using Biogas Slurry -- 9.3.3 Newer Microbial Fuel Cells -- Using Electronophore (Traditional) -- Using Biochar (Latest) -- 9.3.4 Biogas -- Using Sewage -- Using Animal Waste -- Using Animal Manure -- 9.3.5 Biohydrogen -- 9.4 Availability -- 9.4.1 Biomass -- 9.5 Clean Energy -- 9.5.1 Algae -- 9.5.2 Microbial Biophotovoltaic Cells -- Using Algae -- Using Cyanobacteria -- Using Plant Rhizodeposition. , 9.6 Sustainability -- 9.6.1 Biomass -- Crop Residue -- 9.6.2 Camphor -- 9.7 Conclusion -- 9.8 Future Approach -- References -- 10: Applications of Microbes in Food Industry -- 10.1 Introduction -- 10.2 Applications of Microorganisms in Food Industry -- 10.2.1 Baking Industry Applications -- 10.2.2 Alcohol and Beverage Industry Applications -- 10.2.3 Enzyme Production and Its Applications -- 10.2.4 Production of Amino Acids -- 10.2.5 Microbial Detergents as Food Stain Removers -- 10.2.6 Dairy Industry Applications -- 10.2.7 Pigment Production -- 10.2.8 Organic Acid Production -- 10.2.9 Aroma and Flavouring Agents Production -- 10.2.10 Miscellaneous Applications -- Xanthan Gum Production -- Ripening Process -- Food Grade Paper Production -- Single-Cell Protein -- Applications in Other Foods -- 10.3 Summary -- References -- 11: Applications of Microbes in Human Health -- 11.1 Introduction -- 11.2 Human Microbiome -- 11.3 Probiotics -- 11.4 Properties of Probiotics -- 11.5 Probiotics Mechanism of Action -- 11.6 Oral Probiotics -- 11.6.1 Probiotics in Preventing Dental Caries Progression -- 11.6.2 Probiotics in Prevention of Gingival Inflammation -- 11.6.3 Probiotics in Prevention of Periodontal Diseases -- 11.7 Probiotics in Halitosis -- 11.7.1 Probiotics in Oral Mucositis -- 11.7.2 Benefits of Probiotics in General Health -- 11.7.3 Anti-Inflammatory Property -- 11.8 Antimicrobial Properties -- 11.9 Antioxidant Properties -- 11.10 Anticancer Properties -- 11.10.1 Probiotics in Treatment of Upper Respiratory Tract Infections -- 11.10.2 Probiotics in Treatment of Urogenital Infections -- 11.10.3 Probiotics in Improvement of Intestinal Health -- 11.10.4 Probiotics in Treatment of Chemotherapy and Radiotherapy Induced Diarrhea -- 11.10.5 Probiotics in Treatment of Anemia -- 11.11 Treatment and Prevention of Obesity -- 11.12 Probiotics as Immunomodulator. , 11.13 Conclusion -- References -- 12: Applications of Microbes in Soil Health Maintenance for Agricultural Applications -- 12.1 Introduction -- 12.2 Microbial Sources -- 12.2.1 Microalgae and Cyanobacteria -- 12.2.2 Fungi -- 12.2.3 Bacteria -- 12.3 Applications of Microbes -- 12.3.1 Plant Growth Regulators -- 12.3.2 Volatile Organic Compounds (VOCs) -- 12.3.3 Biotic Elicitors -- 12.3.4 Bioremediation -- 12.3.5 Biocontrol -- 12.3.6 Different Types of Microbes -- 12.4 Healthy Soil and Eco-Friendly Environment -- 12.4.1 Biofertilizers -- 12.4.2 Biopesticides -- 12.4.3 Bioherbicides -- 12.4.4 Bioinsecticides -- 12.5 Microbiome and Sustainable Agriculture -- 12.5.1 Benefits of Mycorrhizal Fungi -- 12.5.2 Soil and Environmental Health -- 12.6 Conclusion -- References -- 13: Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production -- 13.1 Introduction -- 13.2 Wastewater Treatment Using Microalgae -- 13.2.1 Wastewater Composition -- 13.2.2 Nutrient Removal -- Influence of Additives in Wastewater on Nutrient Removal by Microalgae -- 13.2.3 Heavy Metal Removal -- 13.3 Microalgae Cultivation and Harvesting -- 13.3.1 Open Ponds -- 13.3.2 Closed System (Photobioreactor PBRs) -- 13.3.3 Hybrid System -- 13.3.4 Harvesting Techniques -- 13.4 Bio-refinery -- 13.5 Bio-fuel Production Using Microalgae -- 13.5.1 Thermochemical Conversion -- 13.5.2 Biochemical Conversion/Fermentation -- 13.5.3 Chemical Reaction/Transesterification -- 13.5.4 Direct Combustion -- 13.6 Sustainability of Energy from Microalgae -- 13.7 Conclusions -- References -- 14: Microalgae Application in Chemicals, Enzymes, and Bioactive Molecules -- 14.1 Introduction -- 14.2 Microalgae-Based Products -- 14.2.1 Chemical Products -- 14.2.2 Bioactive Molecules -- 14.3 Microalgae Enzymes -- 14.4 Industrial Applications of Microalgae. , 14.5 Conclusions and Future Perspectives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Porous materials. ; Electronic books.
    Description / Table of Contents: Internationally assembled experts in the field describe developments and advances in synthesis, tuning parameters, and applications of porous polymers. Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9781000567168
    DDC: 547/.7
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Introduction to Porous Polymers -- 1.1 Introduction -- 1.2 Types of Porous Polymers -- 1.3 Synthetic Methods for Porous Polymer Network -- 1.4 Conclusion -- References -- Chapter 2: Hyper-crosslinked Polymers -- 2.1 Introduction -- 2.1.1 Overview -- 2.1.2 Porous Polymer -- 2.1.3 Crosslinking -- 2.2 Hyper-crosslinked Polymers -- 2.3 Synthesis Methods of HCPs -- 2.3.1 Post-crosslinking Polymer Precursors -- 2.3.2 Direct One-Step Polycondensation -- 2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers -- 2.4 Structure and Morphology of HCPs -- 2.4.1 Nanoparticles -- 2.4.2 Hollow Capsules -- 2.4.3 2D Membranes -- 2.4.4 Monoliths -- 2.5 HCPs Properties -- 2.5.1 Polymer Surface -- 2.5.1.1 Hydrophilicity -- 2.5.1.2 Hydrophobicity -- 2.5.1.3 Amphiphilicity -- 2.5.2 Porosity and Surface Area -- 2.5.3 Swelling Behavior -- 2.5.4 Thermomechanical Properties -- 2.6 Functionalization of HCPs -- 2.7 Characterization of HCPs -- 2.7.1 Compositional and Structural Characterization -- 2.7.2 Morphological Characterization -- 2.7.3 Porosity and Surface Area Analysis -- 2.7.4 Other Analysis -- 2.8 Applications -- 2.8.1 Storage Capacity -- 2.8.1.1 Storage of Hydrogen -- 2.8.1.2 Storage of Methane -- 2.8.1.3 CO 2 Capture -- 2.8.2 Environmental Remediation -- 2.8.3 Heterogeneous Catalysis -- 2.8.4 Drug Delivery -- 2.8.5 Sensing -- 2.8.6 Other Applications -- 2.9 Conclusion -- References -- Chapter 3: Porous Ionic Polymers -- 3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers -- 3.2 Ionic Polymers in Dry State -- 3.3 Ionic Polymers in Swollen State: Hsu-Gierke Model -- 3.4 Modifications of Hsu-Gierke Model: Hydration of Ion Exchange Polymers. , 3.5 Methods for Research of Porous Structure of Ionic Polymers -- 3.5.1 Nitrogen Adsorption-Desorption -- 3.5.2 Mercury Intrusion -- 3.5.3 Adsorption-Desorption of Water Vapor -- 3.5.4 Differential Scanning Calorimetry -- 3.5.5 Standard Contact Porosimetry -- 3.6 Conclusions -- References -- Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics -- 4.1 Introduction -- 4.2 Sorting of Porous Polymers -- 4.2.1 Macroporous Polymers -- 4.2.2 Microporous Polymers -- 4.2.3 Mesoporous Polymers -- 4.3 Methodology -- 4.3.1 AHP Analysis -- 4.4 Conclusions -- References -- Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology -- 5.1 Background -- 5.2 Porous Polymers Based on Natural Polysaccharides -- 5.3 Parameters Involved in the Porous Polymers Processing by High Pressure -- 5.4 Supercritical Fluid Drying for Porous Polymers Processing -- 5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology -- 5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging -- 5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating -- 5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid -- 5.9 Porous Metal-Organic Frameworks Polymers by Supercritical Fluid Processing -- 5.10 Concluding Remarks -- Acknowledgments -- References -- Chapter 6: Porous Polymer for Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Stability and Functionalization of POPs -- 6.3 Strategies for Synthesizing POP Catalyst -- 6.3.1 Co-polymerization -- 6.3.1.1 Acidic and Basic Groups -- 6.3.1.2 Ionic Groups -- 6.3.1.3 Ligand Groups -- 6.3.1.4 Chiral Groups -- 6.3.1.5 Porphyrin Group -- 6.3.2 Self-polymerization -- 6.3.2.1 Organic Ligand Groups -- 6.3.2.2 Organocatalyst Groups -- 6.3.2.3 Ionic Groups -- 6.3.2.4 Chiral Ligand Groups -- 6.3.2.5 Porphyrin Groups. , 6.4 Applications of Various Porous Polymers -- 6.4.1 CO 2 Capture and Utilization -- 6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP -- 6.4.1.1.1 Mechanism of the Cycloaddition Reaction -- 6.4.1.2 Triphenylphosphine-based POP -- 6.4.2 Energy Storage -- 6.4.3 Heterogeneous Catalysis -- 6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction -- 6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins -- 6.4.3.3 Ni(II)-metallated POP for Suzuki-Miyaura Crosscoupling Reaction -- 6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2 -- 6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols -- 6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs -- 6.4.4 Photocatalysis -- 6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units -- 6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst -- 6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles -- 6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst -- 6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole -- 6.4.5 Electrocatalysis -- 6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR) -- References -- Chapter 7: Triazine Porous Frameworks -- 7.1 Introduction -- 7.2 Synthetic Procedures of CTFs and Their Structural Designs -- 7.2.1 Ionothermal Trimerization Strategy -- 7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method -- 7.2.3 Amidine-based Polycondensation Methods -- 7.2.4 Superacid Catalyzed Method -- 7.2.5 Friedel-Crafts Reaction Method -- 7.3 Applications of CTFs -- 7.3.1 Adsorption and Separation -- 7.3.1.1 CO 2 Capture and Separation -- 7.3.1.2 The Removal of Pollutants -- 7.3.2 Heterogeneous Catalysis -- 7.3.3 Applications for Energy Storage and Conversion -- 7.3.3.1 Metal-Ion Batteries -- 7.3.3.2 Supercapacitors. , 7.3.4 Electrocatalysis -- 7.3.5 Photocatalysis -- 7.3.6 Other Applications of CTFs -- References -- Chapter 8: Advanced Separation Applications of Porous Polymers -- 8.1 Introduction -- 8.2 Advanced Separation Applications -- 8.3 Separation through Adsorption -- 8.4 Water Treatment -- 8.5 Conclusion -- Abbreviations -- References -- Chapter 9: Porous Polymers for Membrane Applications -- 9.1 Introduction -- 9.2 Introduction to Synthesis of Porous Polymeric Particles -- 9.3 Preparation of Porous Polymeric Membrane -- 9.4 Morphology of Membrane and Its Parameters -- 9.5 Emerging Applications of Porous Polymer Membranes -- 9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application -- 9.6.1 Polysulfone Membranes -- 9.6.2 Polyvinylidene Fluoride Membranes -- 9.7 Use of Porous Polymeric Membranes for Sensing Application -- 9.8 Use of Porous Polymeric Electrolytic Membranes Application -- 9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization -- 9.10 Use of Porous Polymers for Biomedical Application -- 9.11 Use of Porous Polymeric Membrane in Tissue Engineering -- 9.12 Use of Porous Polymeric Membrane in Wastewater Treatment -- 9.13 Use of Porous Polymeric Membrane for Dye Rejection Application -- 9.14 Porous Polymeric Membrane Antifouling Application -- 9.15 Porous Polymeric Membrane Used for Fuel Cell Application -- 9.16 Conclusion -- References -- Chapter 10: Porous Polymers in Solar Cells -- 10.1 Introduction -- 10.1.1 Si-based Solar Cells -- 10.1.2 Thin-film Solar Cells -- 10.1.3 Organic Solar Cells -- 10.2 Porous Polymers in DSSCs -- 10.2.1 Porous Polymers in Electrodes -- 10.2.2 Porous Polymer as a Counter Electrode -- 10.2.3 Porous Polymers in TiO 2 Photoanode -- 10.2.4 Porous Polymers in Electrolyte -- 10.2.5 Porous Polymer as Energy Conversion Film. , 10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes -- 10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs) -- 10.2.6 Porous Polymers in Coating of Solar Cell -- 10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst -- 10.3 Perovskite Solar Cells -- 10.3.1 Porous Polymers in Electron Transport Layers -- 10.3.2 Porous Polymers in Hole Transport Layers -- 10.3.3 Porous Polymer as Energy Conversion Film -- 10.3.4 Porous Polymers as Interlayers -- 10.3.5 Porous Polymers in Morphology Regulations -- 10.4 Porous Polymers in Silicon Solar Cell -- 10.5 Miscellaneous -- 10.5.1 Porous Polymers in Solar Evaporators -- 10.5.2 Charge Separation Systems in Solar Cells -- 10.5.3 Porous Polymers in ZnO Photoanode -- 10.6 Conclusions -- References -- Chapter 11: Porous Polymers for Hydrogen Production -- 11.1 Introduction -- 11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs) -- 11.1.1.1 Infiltration -- 11.1.1.2 Layer-by-Layer Assembly (LbL) -- 11.1.1.3 Conventional Polymerization -- 11.1.1.4 Electrochemical Polymerization -- 11.1.1.5 Controlled/Living Polymerization (CLP) -- 11.1.1.6 Macromolecular Design -- 11.1.1.7 Self-assembly -- 11.1.1.8 Phase Separation -- 11.1.1.9 Solid and Liquid Templating -- 11.1.1.10 Foaming -- 11.2 Various Porous Polymers for H 2 Production -- 11.2.1 Photocatalysts Based on Conjugated Microporous Polymers -- 11.2.2 Conjugated Microporous Polymers -- 11.2.3 Porous Conjugated Polymer (PCP) -- 11.2.4 Membrane Reactor -- 11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure -- 11.2.6 Porous Organic Polymers (POPs) -- 11.2.7 PEM Water Electrolysis -- 11.2.8 Microporous Inorganic Membranes -- 11.2.9 Hybrid Porous Solids for Hydrogen Evolution -- 11.3 Other Alternatives for Hydrogen Production -- 11.3.1 Metal-Organic Frameworks (MOFs) -- 11.3.2 Covalent Organic Frameworks. , 11.3.3 Photochemical Device.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Sewage-Purification. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (460 pages)
    Edition: 1st ed.
    ISBN: 9783030803346
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.70
    Language: English
    Note: Intro -- Foreword -- Contents -- About the Editors -- Chapter 1: Analytical Methods for the Determination of Heavy Metals in Water -- 1.1 Introduction -- 1.2 Total Concentration and Speciation Analysis -- 1.3 Health and Legislation -- 1.4 Sample Preparation for Elemental Analysis of Heavy Metals -- 1.4.1 Solid-Phase Extraction -- 1.4.1.1 Classic Solid-Phase Extraction -- 1.4.1.1.1 Modern Sorbents for Classic Solid-Phase Extraction -- 1.4.1.1.2 Micro Solid-Phase Extraction -- 1.4.1.2 Dispersive Solid-Phase Extraction -- 1.4.1.2.1 Dispersion Techniques -- 1.4.1.2.2 Modern Sorbents for Dispersive Solid-Phase Extraction and Dispersive Micro-Solid Phase Extraction -- Nanostructured Materials -- Hybrid Materials -- 1.4.1.3 Magnetic Solid-Phase Extraction -- 1.4.1.3.1 Advanced Magnetic Sorbents -- 1.4.2 Liquid-Liquid Extraction -- 1.4.2.1 Modern Solvents Used in Liquid-Liquid Extraction -- 1.4.2.1.1 Non-ionic or Zwitterionic Surfactants -- 1.4.2.1.2 Ionic Liquids -- 1.4.2.1.3 Deep Eutectic Solvents -- 1.4.2.2 Novel Liquid-Liquid Microextraction Techniques -- 1.4.2.2.1 Dispersive Liquid-Liquid Microextraction Techniques -- 1.4.2.2.2 In-Situ Phase Separation Techniques -- 1.4.2.2.3 Cloud Point Extraction -- 1.4.2.2.4 Non-dispersive Microextraction Techniques -- 1.4.2.3 Liquid-Liquid Extraction in Flow Analysis -- 1.5 Analytical Techniques for Heavy Metal Detection -- 1.5.1 Spectroscopic Techniques -- 1.5.1.1 Atomic Absorption Spectroscopy -- 1.5.1.2 Atomic Fluorescence Spectrometry -- 1.5.1.3 Atomic Emission Spectrometry -- 1.5.1.4 Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.4.1 Single Particle Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.5 Laser-Induced Breakdown Spectroscopy -- 1.5.1.6 X-Ray Fluorescence -- 1.5.1.7 UV-Vis Spectrophotometry -- 1.5.2 Electrochemical Techniques -- 1.5.2.1 Potentiostatic Techniques. , 1.5.2.1.1 Amperometry -- 1.5.2.1.2 Chronocoulometry -- 1.5.2.1.3 Voltammetric Techniques -- 1.5.2.2 Galvanostatic Stripping Chronopotentiometry -- 1.5.2.3 Electrochemiluminescence -- 1.5.3 Other Methods -- 1.5.3.1 Ion Chromatography -- 1.5.3.2 Surface-Enhanced Raman Spectroscopy -- 1.5.3.3 Bio Methods -- 1.6 Conclusions and Future Perspectives -- References -- Chapter 2: Olive-Oil Waste for the Removal of Heavy Metals from Wastewater -- 2.1 Introduction -- 2.2 Olive Tree Pruning as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.2.1 Characterization -- 2.2.2 Biosorption Tests -- 2.3 Olive Stone as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.3.1 Characterization -- 2.3.2 Biosorption Tests -- 2.4 Olive Pomace and Olive-Cake as Biosorbents of Heavy Metals from Aqueous Solutions -- 2.4.1 Characterization -- 2.4.2 Biosorption Tests -- 2.5 Other Valorization Opportunities for Olive-Oil Waste -- 2.6 Conclusions -- References -- Chapter 3: Metal Oxide Composites for Heavy Metal Ions Removal -- 3.1 Introduction -- 3.2 Issues in Environmental Remediation -- 3.3 Different Types of Magnetic Sorbents -- 3.3.1 Iron Oxide Modified Nanoparticle -- 3.3.2 Zeolite -- 3.3.3 Silica -- 3.3.4 Polymer Functionalization -- 3.3.5 Chitosan and Alginate -- 3.3.6 Activated Carbon -- 3.3.7 Carbon Nanotubes (CNTs) and Graphene -- 3.3.8 Agricultural Wastes -- 3.4 Case Studies -- 3.4.1 Characterization -- 3.4.2 Factors Affecting Sorption Processes -- 3.4.3 Agro-Based Magnetic Biosorbents Recovery and Reusability -- 3.5 Conclusion -- References -- Chapter 4: Two-Dimensional Materials for Heavy Metal Removal -- 4.1 Introduction -- 4.2 Heavy Metal Ions Removal Mechanism -- 4.2.1 Surface Complexation -- 4.2.2 Van der Waals Interaction -- 4.2.3 Ion Exchange -- 4.3 Different Types of Two-Dimensional Material for Heavy Metal Removal. , 4.3.1 Graphene-Based Two-Dimensional Materials -- 4.3.1.1 Structure -- 4.3.1.2 Graphene-Based Materials for Heavy Metal Removal -- 4.3.2 Dichalcogenides -- 4.3.2.1 Structure -- 4.3.2.2 Molybdenum Disulfide for Heavy Metal Removal -- 4.3.3 MXenes -- 4.3.3.1 Structure -- 4.3.3.2 MXenes for Heavy Metal Removal -- 4.3.4 Clay Minerals -- 4.3.4.1 Structure -- 4.3.4.2 Clay Mineral for Heavy Metal Removal -- 4.3.5 Layered Double Hydroxides -- 4.3.5.1 Structure -- 4.3.5.2 Layered Double Hydroxides for Heavy Metal Removal -- 4.3.6 Layered Zeolites -- 4.3.6.1 Structure -- 4.3.6.2 Layered Zeolites for Heavy Metal Removal -- 4.3.7 Other Two-Dimensional Materials -- 4.4 Heavy Metal Removal Other than Adsorption -- 4.5 Conclusions and Perspectives -- Appendix: List of Two-Dimensional Materials that Mentioned in this Chapter for Heavy Metal Removal and their Removal Capacities -- References -- Chapter 5: Membranes for Heavy Metals Removal -- 5.1 Introduction -- 5.2 Electrodialysis -- 5.2.1 Electrodialysis Applied to Metal Removal -- 5.2.2 Principle -- 5.2.3 Evaluation and Control Parameters -- 5.2.4 Use in Electroplating Industry -- 5.2.4.1 Zinc -- 5.2.4.2 Chromium -- 5.2.4.3 Copper -- 5.2.4.4 Nickel -- 5.2.5 Use in Mining and Mineral Processing Industry -- 5.2.6 Final Considerations -- References -- Chapter 6: Metal Oxides for Removal of Heavy Metal Ions -- 6.1 Introduction -- 6.2 Adsorption Methods -- 6.3 Metal Oxides for the Removal of Heavy Metal Ions from Water -- 6.3.1 Titanium Dioxide -- 6.3.2 Manganese Dioxide -- 6.3.3 Iron Oxide -- 6.3.4 Aluminum Oxide -- 6.3.5 Binary Metal Oxides -- 6.4 Conclusion -- References -- Chapter 7: Organic-Inorganic Ion Exchange Materials for Heavy Metal Removal from Water -- 7.1 Introduction -- 7.2 Ion Exchange Process -- 7.3 Ion Exchange Materials -- 7.3.1 Inorganic Ion Exchangers -- 7.3.2 Organic Ion Exchangers. , 7.4 Heavy Metal Removal with Ion Exchange Materials -- 7.4.1 Lead (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.2 Mercury (II) Removal from Waste Water with Organic-Inorganic Ion Exchangers -- 7.4.3 Cadmium (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.4 Nickel (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.5 Chromium (III, VI) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.6 Copper (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.7 Zinc (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.5 Conclusion -- References -- Chapter 8: Low-Cost Technology for Heavy Metal Cleaning from Water -- 8.1 Introduction -- 8.2 Sources and Impact -- 8.3 Different Routes of Contamination -- 8.4 Conventional Water Treatment Methods -- 8.4.1 Preliminary Treatment -- 8.4.2 Secondary Water Treatment -- 8.4.3 Tertiary Water Treatment -- 8.4.4 Membrane Filtration -- 8.5 Advanced Technology for Heavy Metal Ion Removal -- 8.5.1 Nano-Adsorption -- 8.5.2 Molecularly-Imprinted Polymers -- 8.5.3 Layered Double Hydroxides (LDH) and Covalent-Organic Framework (COF) -- 8.5.4 Emerging Membrane Technologies -- 8.6 Low-Cost and Biotechnological Approaches -- 8.6.1 Biosorption -- 8.6.2 Microbial Remediation -- 8.6.3 Biotechnological Strategies -- 8.7 Conclusion -- References -- Chapter 9: Use of Nanomaterials for Heavy Metal Remediation -- 9.1 General Introduction -- 9.2 Heavy Metals in the Environment -- 9.2.1 Characteristics of Selected Heavy Metals -- 9.3 Wastewater Treatment -- 9.4 Nanomaterials -- 9.4.1 Clay Minerals -- 9.4.2 Layered Double Hydroxide and Their Mixed-Oxides Counterparts -- 9.4.3 Zeolites -- 9.4.4 Two-dimensional Early Transition Metal Carbides and Carbonitrides -- 9.4.5 Metal Based Nanoparticles. , 9.4.5.1 Zero-valent Metals -- 9.4.5.2 Metal Oxides -- 9.4.6 Carbon-based Materials -- 9.4.6.1 Carbon Nanotubes -- 9.4.6.2 Fullerenes -- 9.4.6.3 Graphene -- 9.4.6.4 Graphene Oxide -- 9.4.6.5 Reduced Graphene Oxide -- 9.4.6.6 Graphitic Carbon Nitride -- 9.4.7 Metal Organic Frameworks -- 9.5 Disadvantages of Using Nanomaterials -- 9.6 Conclusions -- References -- Chapter 10: Ecoengineered Approaches for the Remediation of Polluted River Ecosystems -- 10.1 Introduction -- 10.2 Occurrence of Pollutants, Emerging Contaminants and Their Riverine Fates -- 10.3 Hazardous Effects of Water Contaminants on Aquatic and Terrestrial Biota -- 10.4 Historic Concepts of River Bioremediation -- 10.5 Physico-chemical River Remediation Methods -- 10.6 Eco-engineered River Water Remediation Technologies -- 10.6.1 Plant Based River Remediation Systems -- 10.6.1.1 Constructed Wetlands -- 10.6.1.2 Ecological Floating Wetlands, Beds and Islands -- 10.6.1.3 Eco-tanks -- 10.6.1.4 Bio-racks -- 10.6.2 Microorganisms Based River Remediation Systems -- 10.6.2.1 Biofilm Based Eco-engineered Treatment Systems -- 10.6.2.1.1 Bio-filters in River Bioremediation -- 10.6.2.2 Periphyton Based Technologies -- 10.7 In Situ Emerging Integrated Systems for the River Bioremediation -- 10.8 Concluding Remarks -- References -- Chapter 11: Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies -- 11.1 Introduction -- 11.2 Component of Ballast Water -- 11.3 Aquatic Invasive Species -- 11.4 The International Convention for the Control and Management of Ships Ballast Water and Sediments -- 11.5 IMO Standards for Ballast Water Quality -- 11.6 Management Options of Ballast Water -- 11.7 Ballast Water Treatment Technologies -- 11.7.1 Mechanical Treatment -- 11.7.2 Physical Treatment -- 11.7.2.1 Ultrasound and Cavitation. , 11.7.3 Chemical Treatment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Keywords: Nanotechnology-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (474 pages)
    Edition: 1st ed.
    ISBN: 9783319527390
    DDC: 541.372
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- 1 Organic-Inorganic Membranes Impregnated with Ionic Liquid -- Abstract -- 1 Introduction -- 2 Ionic Liquids: General Properties and Applications -- 3 Ionic Liquids as Electrolytes in Fuel Cells -- 4 Ionic Liquid Polymer Membranes for Fuel Cells -- 4.1 Ionic Liquid/Polymer Membranes -- 4.2 Polymerized Ionic Liquid Membranes -- 4.3 IL Gel and Composite Polymer Membranes -- 5 Conclusions -- Acknowledgements -- References -- 2 Organic/TiO2 Nanocomposite Membranes: Recent Developments -- Abstract -- 1 Introduction -- 2 TiO2-Polymer Electrolyte Membranes (PEMs) -- 2.1 Perfluorinated Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes (PEMs) -- 2.2 Acid-Base Polymer Complex-Based Organic-Inorganic Nanocomposite PEMs -- 2.3 TiO2-Modified Polytetrafluoroethylene Membranes -- 2.4 Poly(ether ether ketone)-Based Nanocomposite PEMs -- 2.5 PANI Based Membranes -- 2.6 PES Based Membranes -- 2.7 Polysulfone-Based Membranes -- 2.8 TiO2 Solar Cells -- 2.9 Carbon Materials and Metal-Carbon Nanotube (CNTs)-TiO2 Composites -- 2.9.1 Carbon-TiO2 Composites -- 2.9.2 Graphene (GN)-TiO2 Composites -- 3 Conclusions -- Acknowledgements -- References -- 3 Organic/Silica Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Silica Nanoparticle-Based Membranes -- 3 Conclusion -- References -- 4 Organic/Zeolites Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Basic Concepts About Zeolites -- 3 Polymer-Zeolite Composite Membranes: The Role of the Zeolite -- 3.1 Influence of Si/Al Ratio -- 3.2 Proton Mobility in Zeolites -- 3.3 Internal and External Surface Area -- 3.4 Configurational Diffusion -- 3.5 Crystallite Size [17, 18] -- 3.6 Functionalization of Zeolite Surface -- 3.7 Selectivity, Proton Conductivity, and Permeability. , 4 Techniques for Producing Organic/Zeolite Nanocomposite Membranes -- 5 Synthetic Polymers/Zeolite Nanocomposite Membranes for PEMFCs -- 5.1 Route 1: Zeolite + Organic Monomers -- 5.2 Route 3: Inorganic Precursor + Organic Polymer -- 5.3 Route 4: Zeolite + Organic Polymer -- 6 Natural Polymers/Zeolite Nanocomposite Membranes for PEMFCs -- 7 Conclusions -- Acknowledgements -- References -- 5 Composite Membranes Based on Heteropolyacids and Their Applications in Fuel Cells -- Abstract -- 1 Introduction -- 2 Heteropolyacids Types and Structures -- 3 HPAs and Proton Transport in Fuel Cells -- 4 HPAs in PEM Fuel Cell -- 5 HPAs in High-Temperature and Low-Humidity PEMFC -- 6 HPAs in DMFC -- 7 Concluding Remarks and Future Perspectives -- Acknowledgements -- References -- 6 Organic/Montmorillonite Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Membrane Fabrication Methods -- 2.1 Phase Inversion -- 2.2 Immersion Precipitation -- 2.3 Evaporation-Induced Phase Separation -- 3 Montmorillonite-Based Nanocomposites Membranes -- 4 Conclusion -- References -- 7 Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Methanol Fuel Cells -- Abstract -- 1 Introduction -- 2 Methanol Crossover and Low Proton Conductivity -- 3 Composite SPEEK -- 4 SPEEK-Clay Nanocomposite as PEM for DMFC -- 5 Morphology Types and the Importance of Exfoliated Surface Structure on DMFC Performance -- 6 Preparation of Exfoliated Nanocomposite Membranes -- 7 Electrospinning as a Membrane Morphological Modification Technique -- 8 Electrospun Polymer-Based Nanofiber Membranes for DMFC Application -- 9 Electrospinning Parameters -- 10 Future Directions and Conclusion -- References -- 8 A Basic Overview of Fuel Cells: Thermodynamics and Cell Efficiency -- Abstract -- 1 What Is a Fuel Cell? -- 2 Fuel Cell Structure and Classification -- 3 Fuel Cell Construction. , 4 PEMFC Types, Electrode Reactions, and Cell Potential -- 4.1 H2/O2 PEMFC -- 4.2 Direct Methanol Fuel Cells (DMFC) -- 4.3 Direct Ethanol Fuel Cells (DEFC) -- 4.4 Direct Formic Acid Fuel Cells (DFAFC) -- 4.5 Direct Borohydride Fuel Cells (DBFCs) -- 5 Fuel Cell Thermodynamics -- 5.1 Effect of Temperature -- 5.2 Effect of Pressure -- 5.3 Effect of Concentration of Reactant -- 6 Fuel Cell Efficiency -- 6.1 Losses in Actual System -- 6.2 Activation Overpotential -- 6.3 Ohmic Polarization Losses -- 6.4 Mass Transport Overpotential -- 7 Conclusion -- References -- 9 Organic/Inorganic and Sulfated Zirconia Nanocomposite Membranes for Proton-Exchange Membrane Fuel Cells -- Abstract -- 1 Introduction -- 1.1 Proton-Exchange Membranes (PEMs) -- 2 Organic/Inorganic Hybrid Membranes -- 3 Organic-Sulfated Metal Oxide Hybrid Membrane -- 4 Sulfated Zirconia Nanocomposite Membranes -- 5 Conclusion and Future Prospects -- Acknowledgements -- References -- 10 Electrochemical Promotional Role of Under-Rib Convection-Based Flow-Field in Polymer Electrolyte Membrane Fuel Cells -- Abstract -- 1 Introduction -- 2 General Description of Performance Improvements in PEMFCs -- 2.1 Proton Exchange Membrane -- 2.2 Electrode and Catalyst -- 2.3 Gas Diffusion Layer -- 2.4 Membrane Electrode Assembly -- 2.5 Bipolar Plate -- 2.6 Single Cell and Stack -- 2.6.1 Water and Heat Management -- 2.6.2 Fuel Crossover, Oxidation, and CO Poisoning -- 2.6.3 Scale-up and Long-Term Experiments -- 3 Structured Techniques for Flow-Field Optimization -- 3.1 Experimental Approaches to Flow-Field Optimization -- 3.1.1 Current Density Measurement -- 3.1.2 Flow Visualization -- 3.1.3 Polarization Curve Evaluation -- 3.2 Modeling Approaches to Flow Optimization -- 3.2.1 Computational Fluid Dynamic Modeling -- 3.2.2 Two-Phase Modeling for Water Management -- 3.2.3 Complex Flow-field Interaction Modeling. , 3.3 Validation of Experimental and Numerical Results -- 4 New Flow-field Optimization Approaches Utilizing Under-Rib Convection -- 4.1 Homogeneous Distribution of the Reactants -- 4.2 Uniformity of Temperature and Current Density Distributions -- 4.3 Facilitation of Liquid Water Discharge -- 4.4 Reduction in Pressure Drop -- 4.5 Improvement in Output Power -- 5 Summary -- References -- 11 Methods for the Preparation of Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells -- Abstract -- 1 Introduction -- 2 Methods for Preparation of Nanocomposite Polymer Electrolyte Membranes -- 2.1 Blending of Nanoparticles in Polymer Matrix -- 2.1.1 Phase Inversion Method for Preparation of PEMs -- 2.1.2 Solution Casting Method -- 2.1.3 Hot Press -- 2.2 Doping or Infiltration and Precipitation of Nanoparticles and Precursors -- 2.3 Self-assembly of Nanoparticles -- 2.4 Non-hydrolytic Sol-Gel (NHSG) Method -- 2.5 Layer-by-Layer Fabrication Method -- 2.6 Nonequilibrium Impregnation Reduction -- 2.7 Surface Patterning Method -- 3 Future Directions and Conclusion -- References -- 12 An Overview of Chemical and Mechanical Stabilities of Polymer Electrolytes Membrane -- Abstract -- 1 Introduction -- 2 Durability of Polymer Electrolyte Membrane (PEM) -- 3 Proton Conductivity of PEM -- 4 Chemical Stabilities and Degradation of PEM -- 5 Mechanical Stability and Degradation of PEM -- 6 Conclusion -- Acknowledgements -- References -- 13 Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Fuel Cells -- Abstract -- 1 Introduction -- 2 Electrospinning Process -- 2.1 Electrospun Fibers -- 2.1.1 Poly(vinylidene fluoride) (PVDF) -- 2.1.2 Poly(vinyl alcohol) (PVA) -- 2.1.3 Poly(phenylene oxide) (PPO) -- 2.1.4 Poly(arylene ether)s -- 2.1.5 Poly(imide)s -- 2.1.6 Poly(benzimidazole) (PBI) -- 2.2 Crosslinking of Electrospun Fibers. , 2.3 Interface Bonding -- 3 Reducing Methanol Crossover -- 4 Improving Proton Conductivity -- 4.1 Electrospinning of Nafion -- 4.2 Aligned Nanofibers -- 5 Other Applications of Electrospinning in Fuel Cells -- 6 Conclusion -- References -- 14 Fabrication Techniques for the Polymer Electrolyte Membranes for Fuel Cells -- Abstract -- 1 Introduction -- 2 Recent Developments of PEM-Based on Organic-Inorganic Nanocomposites -- 3 Fabrication Techniques for the Preparation of PEM -- 3.1 Different Polymerization Routes -- 3.2 Plasma Methods -- 3.3 Sol-Gel Method -- 3.4 Ultrasonic Coating Technique -- 3.5 Phase Inversion Method -- 3.6 In Situ Reduction -- 3.7 Catalyst-Coated Membrane by Screen Printing Method -- 3.8 Solution Casting Method -- 3.9 Other Methods -- 4 Summary -- Acknowledgements -- References -- 15 Chitosan-Based Polymer Electrolyte Membranes for Fuel Cell Applications -- Abstract -- 1 Introduction -- 2 Chitosan: An Overview -- 3 Characterization of the Polymer Membrane and Their Desired Properties -- 4 Chitosan Based Membranes for Polymer Electrolyte -- 4.1 Chitosan Blend Polymer Electrolyte -- 4.2 Chitosan Cross-Linked Polymer Electrolyte -- 4.3 Chitosan Polymer Composite Based Polymer Electrode -- 5 Chitosan for Fuel Cell -- 6 Chitosan for Biofuel Cell -- 6.1 Microbial Biofuel Cell -- 6.2 Enzymatic Biofuel Cell -- 7 Conclusions -- Acknowledgements -- References -- 16 Fuel Cells: Construction, Design, and Materials -- Abstract -- 1 Introduction -- 2 Different Types of Fuel Cells -- 3 Construction and Design of Different FC -- 3.1 PEMFC -- 3.2 DMFC -- 3.3 AEMFC -- 3.4 PAFC -- 3.5 SOFC -- 3.6 MCFC -- 4 Catalysts for Different FCs -- 5 Materials and Methods for Preparation of PEM for Fuel Cells -- 6 Characterizations and Characteristic Properties of PEM for Different FC -- 7 Summary -- References. , 17 Proton Conducting Polymer Electrolytes for Fuel Cells via Electrospinning Technique.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Inorganic compounds-Analysis. ; Electronic books.
    Description / Table of Contents: This is the very first book on the highly promising topic of MXenes; focusing on their fundamental characteristics and properties, fabrication techniques and applications. Keywords: MXenes, Nanomaterials, Two-dimensional Materials, Transition Metal Carbides, Transition Metal Nitrides, Electrical Conductivity, Hydrophilicity, Chemical Stability, Catalysis, Membrane Separation, Supercapacitors, Hybrid-ion Capacitors, Batteries, Flexible electronics, Hydrogen Storage, Nanoelectronics, Sensors, Energy R&D, Environmental Applications, Electronic Devices, Biomedical Applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (224 pages)
    Edition: 1st ed.
    ISBN: 9781644900253
    Series Statement: Materials Research Foundations Series ; v.51
    DDC: 543.0858
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- MXenes for Sensors -- 1. Introduction -- 2. Synthesis of MXenes -- 3. MXenes for sensing applications -- 3.1 Electronic sensors -- 3.2 Biosensing -- 4. Characterization -- 5. Final Remarks -- Acknowledgements -- References -- 2 -- A Newly Emerging MXene Nanomaterial for Environmental Applications -- 1. Introduction -- 2. Physiochemical properties of MXenes nanomaterials -- 2.1 Crystal structure -- 2.1.2 Surface chemical structure -- 2.1.3 Band gap structure -- 2.2 Synthesis of MXenes nanomaterials -- 3. MXenes for environmental application -- 3.1 Adsorption -- 3.1.1 Adsorption of organic pollutants -- 3.1.2 Adsorption of inorganic pollutants -- 3.1.3 Adsorption of gaseous pollutants -- 3.1.4 Adsorption of other pollutants -- 3.2 Photocatalysis -- 3.3 Antimicrobial activity -- 3.4 Membrane filtration -- Conclusion and remarks -- Acknowledgments -- References -- 3 -- Two-Dimensional MXene as a Promising Material for Hydrogen Storage -- 1. Introduction -- 2. Family of Mxenes -- 3. Structural properties of Mxenes -- 4. Preparation of Mxenes -- 5. Mxenes for hydrogen storage -- 6. Computational and theoretical study on hydrogen storage over MXenes -- 7. Experimental study of Mxenes -- Conclusion -- Acknowledgments -- References -- 4 -- MXenes for Electrocatalysis -- 1. Introduction -- 2. MXenes forHER -- 2.1 The mechanism of HER -- 2.2 MXene-based catalysts for HER -- 3. MXene for OER -- 3.1 The mechanism of OER -- 3.2 MXene-based catalysts for OER -- 4. MXene for NRR -- 4.1 The mechanism of NRR -- 4.2 MXene-based catalysts for NRR -- Conclusion and outlook -- References -- 5 -- MXenes Composites -- 1. Introduction -- 2. Significance of MXenes composites -- 3. MAX phases in MXenes -- 4. Processing of MXene composites -- 4.1 Synthesis of MXenes -- 4.2 Surface modifications. , 5. Structural and mechanical properties -- 6. Electronic properties -- 7. Surface state properties -- 8. Transport and optical properties -- 9. Magnetic properties -- 10. Applications of MXenes in different fields -- 10.1 Low work function emitters -- 10.2 Catalysts and photocatalysts for hydrogen evolution -- 10.3 Energy conversion for thermoelectric devices -- 10.4 Energy storage -- 10.5 Biomedical applications -- Conclusions -- References -- 6 -- MXenes for Supercapacitors -- 1. Introduction -- 2. Supercapacitor background -- 3. Synthesis approaches -- 3.1 MXene -- 3.2 Element doped MXenes -- 3.3 MXene-based nanocomposites -- 3.4 MXene quantum dots -- 4. Structures, properties and supercapacitor applications -- 4.1 Single/few-layered MXene-based supercapacitors -- 4.2 Element doped MXenes -- 4.3 MXene composites-based supercapacitors -- Summary and outlook -- References -- 7 -- MXenes for Sodium-Ion Batteries -- 1. Introduction -- 2. Na-ion batteries -- 3. Summary -- References -- 8 -- MXenes for Biomedical Applications -- 1. Introduction -- 2. MXenes as antibacterial agent -- 3. MXenes as biosensors -- 4. MXenes in bio-imaging -- 5. Therapeutic applications of MXenes -- Discussion -- References -- 9 -- MXene and its Sensing Applications -- 1. Introduction -- 2. MXenes based sensors -- 2.1 MXene for electrochemical (bio) sensing -- 2.2 MXenes for optical sensing -- 2.3 MXene for gas sensing -- 2.4 MXene for piezoresistive sensing -- Conclusion -- Abbreviations -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: This book on topological insulators is intended to provide the readers with an understanding of the needs and application of such materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (195 pages)
    Edition: 1st ed.
    ISBN: 9781644902851
    Series Statement: Materials Research Foundations Series ; v.154
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Fundamental Concepts of Topological Insulators -- 1. Introduction -- 2. Basic concepts -- 2.1 Quantum Hall to Quantum Spin Hall -- 2.2 Time-reversal symmetry (TRS) -- 2.3 Topological surface-states -- 2.4 Spin orbital coupling -- 2.5 Bulk insulating states -- 2.6 Topological invariants -- 3. Fundamental properties of TIs -- 3.1 Photon-Like Electron -- 3.2 Low-Power Dissipation -- 3.3 Spin-Polarized Electrons -- 3.4 Quantum Spin Hall (QSH) -- 3.5 Mechanical strength -- 3.6 Thermal Expansion and Mechanical Stability -- 3.7 Band inversion and Dirac-like surface-states -- 4. Development of TIs -- Conclusion -- References -- 2 -- One-Dimensional Topological Insulators -- 1. Introduction -- 1.1 Overview of TIs -- 2. History -- 3. Properties -- 3.1 Photon-like electron -- 3.2 Low power dissipation -- 3.3 Spin-polarized electrons -- 3.4 Quantum spin hall effect (QSH) -- 4. Class distribution of TIs -- 4.1 Distribution by dimension -- 4.2 Distribution by parity of Dirac points -- 4.3 Distribution by symmetry -- 5. Synthesis of TIs -- 5.1 Mechanical exfoliation -- 5.2 MBE growth of TIs -- 5.3 Chemical vapor deposition -- 5.4 Physical vapor deposition (PVD) -- 6. Generations of TIs -- 6.1 First-generation TIs -- 6.2 Second-generation TIs -- 6.3 Higher -order TIs -- 6.4 Experimental realization of 2D and 3D TIs -- 7. Photonic TIs -- 7.1 Floquet topological insulators -- 8. Bismuth-based topological insulators -- 9. Extensions of one-dimensional topological insulator models -- 9.1 SSH model -- 9.2 Jackiw-Rebbi Model -- 10. Reversed conductance decay of 1D topological insulators -- 11. Topological Insulators in a ten-fold way -- 11.1 T-symmetry -- 11.2 Particle-hole symmetry -- 11.3 Chiral symmetry -- 12. Future evolution of 1D topological insulators -- Conclusion -- References -- 3. , The Origin of Topological Insulators -- 1. Introduction -- 2. Topological insulator's primer -- 2.1 Knowledge acquire from past -- 2.2 Going 3D -- 3. Experimental realizations -- 3.1 A graphene lookalike -- 3.2 Concerned matter -- 4. A novel field -- 4.1 Superfluidity and particle physics -- 4.2 Emergent particles and quantum computing -- Conclusion -- References -- 4 -- Magnetic Topological Insulator -- 1. Introduction -- 2. Origin of magnetization in magnetic topological insulators -- 3. Intrinsic magnetic TIs -- 3.1 Anti-ferromagnetic phase -- 3.2 Ferromagnetic phase -- 4. Experimental observation of an intrinsic magnetic TI -- 5. Quantum anomalous hall effect in magnetic TIs -- 5.1 Quantum spin hall effect in 2D system -- 5.2 QHE, QSHE, and QAHE -- 6. Experimental observation of the AQHE in a MTIs -- Conclusion -- References -- 5 -- Topological Superconductor -- 1. Introduction -- 2. Theory of topological superconductors -- 3. Majorana fermions -- 4. Possible candidate of superconductivity in TSCs -- 4.1 Unconventional superconductors (SCs) -- 4.2 Iron based superconductors -- 4.3 Tin based superconductors -- 5. Properties of topological superconductors -- 5.1 Spin current and thermal conductivity -- 5.2 Anomalous Josephson effect -- 5.3 Majorana fermions in hybrid systems -- 5.4 Nematicity -- Conclusion -- References -- 6 -- Manganese Doped Topological Insulators -- 1. Introduction -- 2. Structure -- 2.1 Layered structure of MnBi2Se4 -- 2.2 Vapor transport growth of MnBi2Te4 -- 3. Extrinsic magnetic moments -- 4. Intrinsic magnetic properties -- 5. Heterostructure comprising MBT and magnetic monolayer materials -- 6. MBT Family -- 6.1 Chemically substituted MBT -- 6.2 Puzzle surface state of MBT -- 7. Effect of magnetic moment on Mn atoms -- 8. Temperature evaluation of the electronic structure of MnBi4Te7. , 9. Thermoelectricity in Mn doped topological insulator Bi2Se3 -- 9.1 Experimental setup -- 9.2 Result and discussion -- Conclusion -- Reference -- 7 -- Topological Insulators in Optical Applications -- 1. Introduction -- 2. Light trapping in thin film -- 2.1 Solar cell embedded with photonic topological insulator -- 3. Ultra wide dual bandwidth -- 4. Topological beam splitter -- 4.1 Implementation of topological beam splitter -- 5. Corner states in 2D photonic topological insulators -- 6. Bi2Te3 topological insulators -- 6.1 Photo-induced structured waves -- 6.2 Dynamic optical study -- 7. Bi2Se3 topological insulator -- 7.1 Saturabe absorber -- Conclusions -- References -- 8 -- Topological Insulators for Mode-Locked Fiber Lasers -- 1. Introduction -- 2. Topological insulator saturable absorber based fiber lasers -- 2.1 TISA in Erbium-doped fiber laser -- 2.2 TISA in Ytterbium-doped fiber laser -- 3. Result and discussion -- 3.1 Fundamental mode-locking and optical characterization -- 3.1.1 Erbium-doped fiber laser -- 3.1.2 Ytterbium-doped fiber laser -- 3.2 Mode-locked and Q-switched fiber lasers -- 3.2.1 Mode-locked fiber lasers -- 3.3 Q-switched fiber lasers -- 3.4 Challenges and future perspective -- Conclusion -- References -- 9 -- Fundamentals Concepts of Topological Insulators: Historical Overview and Single Crystal Growth Techniques -- 1. Introduction -- 2. Knowledge and learning from the past - A historical perspective -- 3. Synthesis routes for fabrication of topological insulators -- 3.1 Optical floating zone -- 3.2 Metal flux route -- 3.3 Czochralski method -- 3.4 Chemical vapour deposition -- 3.5 Bridgman principle -- 4. Outlook and future perspectives -- Conclusions -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...