GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: calbindin-D28k ; 1,25-dihydroxyvitamin D3 ; messenger RNA ; organ culture ; polymerase chain reaction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Organ culture of 19-day-old chick embryo duodena was utilized to evaluate the mechanism of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-dependent calbindin-D28k (CaBP) expression. Duodenal CaBP and 1,25(OH)2D3 receptor (VDR) expression were assessed by Western blot analysis, while CaBP and VDR mRNA levels were determined by Northen blot analysis. In untreated duodena, both VDR protein and mRNA were present, while CaBP protein and mRNA were undetectable. Treatment of cultured duodena with 25 nM 1,25(OH)2D3 resulted in detectable CaBP mRNA after 4 h which continued to increase during a 24 h time period. Under these conditions, localization of [3H-1β]1α,25(OH)2D3 in duodenal chromatin is rapid (≤ 30 min). Thus, the delayed accumulation of detectable CaBP mRNA cannot be explained by slow nuclear binding of 1,25(OH)2D3. The inclusion of 1.6 μM actinomycin D in the organ culture partially inhibited the 1,25(OH)2D3-regulated increase in CaBP mRNA, which implies that there is a transcriptional component involved in the increased CaBP mRNA levels. Similarly, quantitative polymerase chain reaction studies allowed the detection of CaBP pre-mRNA and mRNA sequences 1 h after hormone treatment, suggesting that CaBP gene transcription is initiated rapidly. Treatment of cultures with 36 μM cycloheximide 1 h prior to 1,25(OH)2D3 addition resulted in superinduction of VDR mRNA levels but sharply reduced CaBP steady-state mRNA levels. This dramatic reduction in CaBP mRNA reveals that 1,25(OH)2D3-mediated CaBP expression is dependent on ongoing protein synthesis. Thus, we propose that a labile auxiliary protein or other cofactor, which may or may not be 1,25(OH)2D3-dependent, is necessary for 1,25(OH)2D3-mediated CaBP gene transcription in chick duodena.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-22
    Description: The contribution of sediments to nutrient cycling of the coastal North Sea is strongly controlled by the intensity of fluxes across the sediment water interface. Pore‐water advection is one major exchange mechanism that is well described by models, as it is determined by physical parameters. In contrast, biotransport (i.e., bioirrigation, bioturbation) as the other major transport mechanism is much more complex. Observational data reflecting biotransport, from the German Bight for example, is scarce. We sampled the major sediment provinces of the German Bight repeatedly over the years from 2013 to 2019. By employing ex situ whole core incubations, we established the seasonal and spatial variability of macrofauna‐sustained benthic fluxes of oxygen and nutrients. A multivariate, partial least squares analysis identified faunal activity, in specifically bioturbation and bioirrigation, alongside temperature, as the most important drivers of oxygen and nutrient fluxes. Their combined effect explained 63% of the observed variability in oxygen fluxes, and 36–48% of variability in nutrient fluxes. Additional 10% of the observed variability of fluxes were explained by sediment type and the availability of plankton biomass. Based on our extrapolation by sediment provinces, we conclude that pore‐water advection and macrofaunal activity contributed equally to the total benthic oxygen uptake in the German Bight.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; southern North Sea ; coastal sediments ; macrofauna ; bioturbation ; bioirrigation ; organic matter turnover
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...