GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • meromictic lake  (1)
  • methane  (1)
Document type
Keywords
Publisher
Language
Years
  • 1
    Publication Date: 2023-01-21
    Description: Extraordinary amounts of greenhouse gases can be stored within the monimolimnion of meromictic lakes, that is, in the water body which is excluded from mixing events. Lake Burgsee (Thuringia, Germany) is a shallow (depth 〈5 m) lake with a approximately 24 m deep sinkhole, which is fed by underground brine sources and has formed such a monimolimnion. We investigated the carbon dioxide and methane dynamics in this meromictic lake, from production potentials in the sediment via concentrations in the monimolimnion and mixolimnion to emissions to the atmosphere. In the monimolimnion, we found one of the highest methane concentrations (up to 〉5 mmol L−1) ever reported for a natural freshwater lake, while carbon dioxide concentrations in the water and methane production rates in the sediments were rather ordinary and within the range of holomictic eutrophic lakes. At the thermocline, gas concentrations accumulated to approximately 100 μmol L−1 CH4 and 80–230 μmol L−1 CO2. Estimated fluxes to the atmosphere reached considerable 3.5 mmol CH4 m−2 d−1 and 1.5 mmol CO2 m−2 d−1 above the sinkhole and 0.8 mmol CH4 m−2 d−1 and 0.4 mmol CO2 m−2 d−1 above the near‐by shallow lake center in 2018. Our results demonstrate that lakes in natural brine areas may provide significant storages and releases of greenhouse gases and require further investigation.
    Description: Plain Language Summary: In meromictic lakes, the deepest water layer, the monimolimnion, is stagnant and not included in seasonal water circulation. Organic matter continuously sinks down into the oxygen‐free monimolimnion, where it is decomposed into the final gaseous products carbon dioxide (CO2) and methane (CH4). Lake Burgsee is a meromictic shallow (depth 〈5 m), brine‐fed lake with a approximately 24 m deep sinkhole. At the bottom of the narrow sinkhole, salinities are as high as in brackish water and cause a chemical stratification of the water body—a monimolimnion—in approximately 18 m depth. CH4 concentrations above the sediment reach 〉5 mmol L−1, which is more than one order of magnitude higher than at the water surface and among the highest CH4 concentrations found in freshwater lakes worldwide. Further, emissions of CH4 and CO2 from the water to the atmosphere were considerable in 2018, and about four times higher above the sinkhole than above the shallow lake center. These results demonstrate, that lakes in natural brine areas may store and release significant amounts of greenhouse gases and require further investigation.
    Description: Key Points: In the urban meromictic Lake Burgsee, methane production potentials in the sediment are similar to eutrophic holomictic lakes. At its deepest site, it contains one of the highest methane concentrations (〉5 mmol L−1 CH4) ever reported for a natural freshwater lake. Lake Burgsee emits up to 〉3 mmol m−2 d−1 CH4 to the atmosphere above the sinkhole and 〈1 mmol m−2 d−1 CH4 at a near‐by shallow site.
    Keywords: ddc:551 ; meromictic lake ; sinkhole ; salinity ; greenhouse gases ; methane flux ; carbon dioxide
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: carbon dioxide ; diffusion ; ebullition ; emission ; freshwater ; hypertrophic lakes ; methane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The fluxes of CH4 and CO2 to the atmosphere, and the relative contributions of ebullition and molecular diffusion, were determined for a small hypertrophic freshwater lake (Priest Pot, UK) over the period May to October 1997. The average total flux of CH4 and CO2 (estimated from 7 sites on the lake) was approximately 52 mmol m−2 d−1 and was apportioned 12 and 40 mmol m−2 d−1 toCH4 and CO2 respectively. Diffusion across the air-water interface accounted for the loss of 0.4and 40 mmol m−2 d−1 of CH4 and CO2 respectively whilst the corresponding figures for ebullition losses were 12.0 (CH4) and 0.23 (CO2) mmol m−2 d−1. Most CH4 (96%) was lost by ebullition, and most CO2 (99%) by diffusive processes. The ebullition of gas, measured at weekly intervals along a transect of the lake, showed high spatial and temporal variation. The CH4 content of the trapped gas varied between 44 and 88% (by volume) and was highest at the deepest points. Pulses of gas ebullition were detected during periods of rapidly falling barometric pressure. Therelevance of the measurements to global estimates ofcarbon emission from freshwaters are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...