GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 163-173, doi:10.1016/j.dsr2.2012.11.002.
    Description: A series of oceanographic surveys on Georges Bank document variability of populations of the toxic dinoflagellate Alexandrium fundyense on time scales ranging from synoptic to seasonal to interannual. Blooms of A. fundyense on Georges Bank can reach concentrations on the order of 104 cells l-1, and are generally bank-wide in extent. Georges Bank populations of A. fundyense appear to be quasi-independent of those in the adjacent coastal Gulf of Maine, insofar as they occupy a hydrographic niche that is colder and saltier than their coastal counterparts. In contrast to coastal populations that rely on abundant resting cysts for bloom initiation, very few cysts are present in the sediments on Georges Bank. Bloom dynamics must therefore be largely controlled by the balance between growth and mortality processes, which are at present largely unknown for this population. Based on correlations between cell abundance and nutrient distributions, ammonium appears to be an important source of nitrogen for A. fundyense blooms on Georges Bank.
    Description: We appreciate financial support of the National Oceanic Atmospheric Administration (grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program) and the Woods Hole Center for Oceans and Human Health through National Science Foundation grants OCE-0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grant 1P50-ES01274201.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Paralytic shellfish poisoning ; USA ; Gulf of Maine ; Georges Bank
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 174-184, doi:10.1016/j.dsr2.2013.05.011.
    Description: In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.
    Description: The R/V Tioga sampling effort was facilitated by event response funding from the National Oceanic Atmospheric Administration (NOAA), National Ocean Service, Center for Sponsored Coastal Ocean Research, through NOAA Cooperative Agreement NA17RJ1223. Additional support for follow-up analysis and synthesis was provided by NOAA grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program and the Woods Hole Center for Oceans and Human Health through National Science Foundation grants OCE- 0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grant 1P50-ES01274201.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Cysts ; Paralytic shellfish poisoning ; USA ; Gulf of Maine
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...