GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Sustainable engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (525 pages)
    Edition: 1st ed.
    ISBN: 9781119678502
    DDC: 628
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Ecological Engineering and Ecosystem Services - Theory and Practice -- 1.1 Introduction -- 1.2 Ecological Engineering: History and Definition -- 1.3 Ecosystem Services: History, Concepts, and Dimensions -- 1.3.1 Sizing Ecosystem Services -- 1.3.2 Agriculture and Ecosystem Services -- 1.4 Final Considerations: Challenges for the Future -- Notes -- References -- Chapter 2 Ecological and Ecosystem Engineering for Economic-Environmental Revitalization -- 2.1 Introduction -- 2.2 Revitalization of Physical/Environmental Factors -- 2.2.1 Low Temperature -- 2.2.2 Limited Soil Drainage and Shallow Rooting Depth -- 2.2.3 Unfavorable Texture and Stoniness -- 2.2.4 Sloping Areas -- 2.2.5 Dryness -- 2.2.6 Waterlogging -- 2.3 Revitalization of Chemical Factors -- 2.3.1 Acidity -- 2.3.2 Heavy Metals and Organic Contaminants -- 2.3.3 Salinity and Sodicity -- 2.4 Economic Revitalization of Degraded Soil Ecosystems -- 2.5 Conclusions -- References -- Chapter 3 Environmental Issues and Priority Areas for Ecological Engineering Initiatives -- 3.1 Introduction -- 3.2 Basic Concepts of Ecological Engineering -- 3.3 Practice and Implication of Ecological Engineering -- 3.4 Priority Areas for Ecological Engineering -- 3.4.1 Coastal Ecosystem Restoration -- 3.4.2 Mangrove Restoration -- 3.4.3 River and Wetland Restoration -- 3.4.4 Ecological Engineering in Soil Restoration and Agriculture -- 3.5 Conclusion -- Notes -- References -- Chapter 4 Soil Meso- and Macrofauna Indicators of Restoration Success in Rehabilitated Mine Sites -- 4.1 Introduction -- 4.2 Restoration to Combat Land Degradation -- 4.3 Mine Rehabilitation -- 4.3.1 Mine Tailings -- 4.3.2 Rehabilitation of Mine Tailings -- 4.3.3 The Challenge of Metal Mine Rehabilitation. , 4.4 Restoration Success Assessment: Monitoring Diversity, Vegetation, and Ecological Processes -- 4.4.1 Monitoring Diversity -- 4.4.2 Vegetation -- 4.4.3 Ecological Processes -- 4.5 Gaps in the Assessment of Restoration Success in Mine Sites -- 4.6 Increasing Restoration Success by Enhancing Soil Biodiversity and Soil Multifunctionality -- 4.7 Using Keystone Species and Ecosystem Engineers in Restoration -- 4.7.1 Earthworms -- 4.7.2 Ants -- 4.7.3 Termites -- 4.7.4 Collembola and Mites -- 4.8 Conclusions and Further Perspective for the Restoration of Metalliferous Tailings -- References -- Chapter 5 Ecological Engineering and Green Infrastructure in Mitigating Emerging Urban Environmental Threats -- 5.1 Dimensions of Ecological Engineering in the Frame of Ecosystem Service Provision -- 5.2 Landfill Afteruse Practices Based on Ecological Engineering and Green Infrastructure -- 5.2.1 Old Landfill Closure and Rehabilitation Procedures -- 5.2.2 Landfill Restoration Examples Around the World -- 5.2.2.1 Conventional Landfill Closure (Campulung, Romania) -- 5.2.2.2 Elbauenpark Including Am Cracauer Anger Landfill (Magdeburg, Germany) -- 5.2.2.3 World Cup Park (Nanjido Landfill, Seoul, South Korea) -- 5.2.2.4 Fudekeng Environmental Restoration Park (Taiwan) -- 5.2.2.5 Hong Kong -- 5.2.2.6 Hyria Landfill Site (Tel Aviv, Israel) -- 5.2.2.7 Valdemingomez Forest Park (Madrid, Spain) -- 5.2.2.8 Freshkills Park - A Mega Restoration Project in the US -- 5.3 Role of Ecological Engineering in Transforming Brownfields into Greenfields -- 5.3.1 UGI Options for Brownfield Recycling -- 5.3.2 Pilot Case: Restoration of a Brownfield to Provide ES - Albert Railway Station (Dresden, Germany) Transformation into the Weißeritz Greenbelt -- 5.4 Green Infrastructures for Mitigating Urban Transport-Induced Threats -- 5.4.1 Transportation Heritage from the Industrial Period. , 5.4.2 The Cases of the Rose Kennedy Greenway and Cheonggyecheon River Restoration -- 5.4.2.1 The Concept: Expressway-to-Greenway Conversion -- 5.4.2.2 Environmental Efficiency and Effectiveness -- 5.4.2.3 Social Impact -- 5.4.2.4 Economic Efficiency -- 5.5 Conclusions -- References -- Chapter 6 Urban Environmental Issues and Mitigation by Applying Ecological and Ecosystem Engineering -- 6.1 Urbanization -- 6.2 Global Trends of Urbanization and Its Consequences -- 6.3 Urban Environmental Issues -- 6.3.1 Physical Urban Environmental Issues -- 6.3.1.1 Urban Heat Islands -- 6.3.1.2 Urban Flooding -- 6.3.1.3 Urban Pollution (Air, Water, Noise) and Waste Management -- 6.3.2 Biological Urban Environmental Issues -- 6.3.2.1 Declining Urban Ecosystem Services Due to Loss of Biodiversity -- 6.3.2.2 Increasing Disease Epidemiology -- 6.4 Ecosystem Engineering -- 6.5 Approaches for Mitigation of Urban Environmental Issues -- 6.5.1 Nature-Based Solutions -- 6.5.1.1 Green Infrastructure (GI) -- 6.5.1.2 Urban Wetlands and Riparian Forests -- 6.5.1.3 Solar Energy -- 6.5.2 Artificial Engineering Approaches -- 6.5.3 Landfill Gas as an Alternative Source of Energy: Waste to Wealth -- 6.5.3.1 Wastewater/Sewage Treatment Plants as Sources of Energy -- 6.5.3.2 Rainwater Harvesting -- 6.5.3.3 Constructed Floating Islands for Water Treatment -- 6.5.3.4 Microgrids -- 6.6 Future Perspective -- Acknowledgments -- References -- Chapter 7 Soil Fertility Restoration, Theory and Practice -- 7.1 Introduction -- 7.2 Materials and Methods -- 7.3 Results -- 7.4 Discussion and Conclusions -- Acknowledgment -- References -- Chapter 8 Extracellular Soil Enzymes Act as Moderators to Restore Carbon in Soil Habitats -- 8.1 Introduction -- 8.2 Soil Organic Matter (SOM) -- 8.3 Soil Organic Carbon (SOC) -- 8.4 Soil Carbon Sequestration -- 8.5 Extracellular Soil Enzymes. , 8.6 Interactive Role of Extracellular Soil Enzymes in Soil Carbon Transformation -- 8.6.1 Cellulase -- 8.6.2 -Glucosidase -- 8.6.3 Invertase -- 8.6.4 Amylase -- 8.6.5 Xylanase -- 8.7 Conclusion -- References -- Chapter 9 Ecological Engineering for Solid Waste Segregation, Reduction, and Resource Recovery - A Contextual Analysis in Brazil -- 9.1 Introduction -- 9.2 Municipal Solid Waste in Brazil -- 9.3 Compostable Waste -- 9.4 Anaerobic Digestion -- 9.5 Recycling -- 9.6 Burning Waste Tires -- 9.7 Energy Recovery -- 9.8 Coprocessing Industrial Waste in Cement Kilns -- References -- Chapter 10 Urban Floods and Mitigation by Applying Ecological and Ecosystem Engineering -- 10.1 Sustainable Ecosystems through Engineering Approaches -- 10.2 Flooding and, Specifically, Urban Flooding as a Problem of Interest -- 10.3 Causes and Impacts of Urban Flooding -- 10.4 Protection Against and Mitigation of Urban Flooding in the Context of Sustainability -- 10.4.1 Living with Floods as a Sustainable Approach -- 10.4.2 Urban Flood Risk Management -- 10.4.3 Integrated and Interactive Flood Management -- 10.4.4 Structural and Nonstructural Measures for Flood Control -- 10.4.5 River and Wetland Restoration -- 10.4.6 Low Impact Development (LID) and Best Management Practices (BMPs) -- 10.5 Conclusions and Future Scope -- References -- Chapter 11 Ecological Engineering and Restoration of Mine Ecosystems -- 11.1 Background and Definitions -- 11.2 Ecological Criteria for Successful Mine Site Restoration -- 11.3 Examples of Reclamation Technology and Afforestation in Mining Areas -- 11.4 Selected Reclamation Practices Versus Mining Extraction and Environmental Conditions -- 11.5 Final Comments and Remarks -- References -- Chapter 12 Ecological Restoration of Abandoned Mine Land: Theory to Practice -- 12.1 Introduction. , 12.2 Integration of Ecology Theory, Restoration Ecology, and Ecological Restoration -- 12.2.1 Disturbance -- 12.2.2 Succession -- 12.2.3 Fragmentation -- 12.2.4 Ecosystem Functions -- 12.2.5 Restoration -- 12.2.6 Reclamation -- 12.2.7 Rehabilitation -- 12.2.8 Regeneration -- 12.2.9 Recovery -- 12.3 Restoration Planning -- 12.4 Components of Restoration -- 12.4.1 Natural Processes -- 12.4.2 Physical and Nutritional Constraints -- 12.4.3 Species Diversity -- 12.5 Afforestation of Mine-Degraded Land -- 12.5.1 Miyawaki Planting Methods -- 12.6 Methods of Evaluating Ecological Restoration Success -- 12.6.1 Criteria for Restoration Success -- 12.6.2 Indicator Parameters of a Restored Ecosystem -- 12.6.3 Soil Quality Index -- 12.7 Development of a Post-Mining Ecosystem: A Case Study in India -- 12.8 Conclusions and Future Research -- References -- Chapter 13 Wetland, Watershed, and Lake Restoration -- 13.1 Introduction -- 13.2 Renovation of Wastewater -- 13.2.1 Physical Methods -- 13.2.2 Chemical Methods -- 13.2.3 Biological Methods -- 13.2.4 Other Methods -- 13.3 Restoration of Bodies of Water -- 13.3.1 Watersheds -- 13.3.2 Wetlands -- 13.3.2.1 Methods of Restoring Wetlands -- 13.3.3 Rivers -- 13.3.4 Lakes -- 13.3.5 Streams -- 13.3.6 Case Studies -- 13.4 Problems Encountered in Restoration Projects -- 13.5 Conclusion -- References -- Chapter 14 Restoration of Riverine Health: An Ecohydrological Approach -Flow Regimes and Aquatic Biodiversity -- 14.1 Introduction -- 14.2 Habitat Ecology -- 14.2.1 Riverine Habitats -- 14.2.2 Linked Ecosystems -- 14.3 Riverine Issues -- 14.3.1 Bank Erosion, Siltation, and Aggradations of Rivers -- 14.3.2 Deforestation in Catchment Areas -- 14.3.3 River Pollution and Invasive Species -- 14.3.4 Fishing Pressure -- 14.3.5 Status of Wetlands (FPLs) -- 14.3.6 Regulated Rivers and Their Impacts. , 14.4 Ecorestoration of River Basins.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...