GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 132 (1982), S. 285-288 
    ISSN: 1432-072X
    Keywords: Desulfobacter postgatei ; Methanosarcina barkeri ; K s values for acetate ; Methanogenesis ; Sulfate reduction ; Competition for acetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanosarcina barkeri and Desulfobacter postgatei are ubiquitous anaerobic bacteria which grow on acetate or acetate plus sulfate, respectively, as sole energy sources. Their apparent K s values for acetate were determined and found to be approximately 0.2 mM for the sulfate-reducing bacterium and 3 mM for the methanogenic bacterium. In mixed cell suspensions of the two bacteria (adjusted to equal V max) the rate of acetate consumption by D. postgatei approached 15-fold the rate of M. barkeri at low acetate concentrations. The apparent inhibition of methanogenesis was of the same order as expected from the different K s value for acetate. Difference in substrate affinities can thus account for the inhibition of methanogenesis from acetate in sulfate-rich environments, where the acetate concentration is well below 1 mM.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Desulfovibrio ; Chemolithothrophic growth ; H2 oxidation ; Sulfate reduction ; Thiosulfate reduction ; Growth rates ; Growth yields ; Maintenance coefficients ; Y ATP max
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Desulfovibrio vulgaris (Marburg) was grown on H2 plus sulfate and H2 plus thiosulfate as the sole energy sources and acetate plus CO2 as the sole carbon sources. Conditions are described under which the bacteria grew exponentially. Specific growth rates (μ) and molar growth yields (Y) at different pH were determined. μ and Y were found to be strongly dependent on the pH. Highest growth rates and molar growth yields were observed for growth on H2 plus sulfate at pH 6.5 (μ=0.15h-1; Y SO 4 2- =8.3g·mol-1) and for growth on H2 plus thiosulfate at pH 6.8 (μ=0.21h-1; Y S 2O 3 2 =16.9g·mol-1). The growth yields were found to increase with increasing growth rates: plots of 1/Y versus 1/μ were linear. Via extrapolation to infinite growth rates a Y SO4 2- /max of 12.2g·mol-1 and a YS2O 3 2- /max of 33.5g·mol-1 was obtained. The growth yield data are interpred to indicate that dissimilatory sulfate reduction to sulfide is associated with a net synthesis of 1 mol of ATP and that near to 3 mol of ATP are formed during dissimilatory sulfite reduction to sulfide.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Desulfovibrio vulgaris ; Methanobrevibacter arboriphilus ; Ks values for H2 ; Methanogenesis ; Sulfate reduction ; Competition for H2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Desulfovibrio vulgaris (Marburg) and Methanobrevibacter arboriphilus (AZ) are anaerobic sewage sludge bacteria which grow on H2 plus sulfate and H2 plus CO2 as sole energy sources, respectively. Their apparent Ks values for H2 were determined and found to be approximately 1 μM for the sulfate reducing bacterium and 6 μM for the methanogenic bacterium. In mixed cell suspensions of the two bacteria (adjusted to equal V max) the rate of H2 consumption by D. vulgaris was five times that of M. arboriphilus, when the hydrogen supply was rate limiting. The apparent inhibition of methanogenesis was of the same order as expected from the different Ks values for H2. Difference in substrate affinities can thus account for the inhibition of methanogenesis from H2 and CO2 in sulfate rich environments, where the H2 concentration is well below 5 μM.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 152 (1989), S. 189-195 
    ISSN: 1432-072X
    Keywords: Desulfotomaculum ; Sulfate reduction ; Acetate oxidation ; Acetyl-CoA/carbon monoxide dehydrogenase pathway ; Carbon monoxide dehydrogenase ; Carbon monoxide formation ; Electron transport phosphorylation coupled to acetate oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Desulfotomaculum acetoxidans oxidizes acetate to CO2 with sulfate. This organism metabolizes acetate via a pathway in which C1 units rather than tri- and dicarboxylic acids are intermediates. We report here that cell extracts of D. acetoxidans catalyzed an exchange between CO2 and the carboxyl group of acetate at a rate of 90 nmol · min-1 · mg-1 protein which is sufficient to account for the in vivo acetate oxidation rate of 250 nmol · min-1 · mg-1 protein. The reaction was strictly dependent on both ATP and coenzyme A. The extracts contain high activities of acetate kinase (6.3 U · mg-1 protein) and phosphotransacetylase (60 U · mg-1 protein). These findings indicate that acetyl-CoA rather than acetyl-phosphate or acetate is the substrate of the carbon-carbon cleavage activity. Exchange was only observed in the presence of strong reducing agents such as Ti3+. Interestingly, the cell extracts also catalyzed the reduction of CO2 to CO with Ti3+ as electron donor (120 nmol · min-1 · mg-1 protein). Carbon monoxide dehydrogenase and other oxidoreductases involved in acetate oxidation were found to be partially associated with the membrane fraction suggesting a membrane localization of these enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 374-380 
    ISSN: 1432-072X
    Keywords: Desulfotomaculum ; Sulfate reduction ; Acetate oxidation ; Acetyl-CoA ; Carbon monoxide dehydrogenase ; Tetrahydrofolates ; Acetyl-CoA/carbon monoxide dehydrogenase pathway ; Citric acid cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Desulfotomaculum acetoxidans has been proposed to oxidize acetate to CO2 via an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway rather than via the citric acid cycle. We report here the presence of the enzyme activities required for the operation of the novel pathway. In cell extracts the following activities were found (values in brackets=specific activities and apparent K m; 1 U·mg-1=1 μmol·min-1·mg protein-1 at 37°C): Acetate kinase (6.3 U·mg-1; 2 mM acetate; 2.4 mM ATP); phosphate acetyltransferase (60 U·mg-1, 0.4 mM acetylphosphate; 0.1 mM CoA); carbon monoxide dehydrogenase (29 U·mg-1; 13% carbon monoxide; 1.3 mM methyl viologen); 5,10-methylenetetrahydrofolate reductase (3 U·mg-1, 0.06 mM CH3−FH4); methylenetetrahydrofolate dehydrogenase (3.6 U·mg-1, 0.9 mM NAD, 0.1 mM CH2=FH4); methenyltetrahydrofolate cyclohydrolase (0.3 U·mg-1); formyltetrahydrofolate synthetase (3 U·mg-1, 1.4 mM FH4, 0.4 mM ATP, 13 mM formate); and formate dehydrogenase (10 U·mg-1, 0.4 mM formate, 0.5 mM NAD). The specific activities are sufficient to account for the in vivo acetate oxidation rate of 0.26 U·mg-1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 136 (1983), S. 230-233 
    ISSN: 1432-072X
    Keywords: Desulfobacter postgatei ; Acetate oxidation ; Sulfate reduction ; Citric acid cycle ; Anaplerotic reactions ; Citrate (si)-synthesis ; 2-Oxoglutarate synthesis ; Oxaloacetate synthesis ; Pyruvate synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract All the enzymes required for the oxidation of acetate to CO2 via the citric acid cycle were found in Desulfobacter postgatei. To obtain in vivo evidence for the operation of this cycle, the sulfate reducing bacterium was grown on [14C]acetate in the presence of a large pool of 12CO2 and the incorporation of 14C into glutamate (≙ 2-oxoglutarate), aspartate (≙ oxaloacetate), and alanine (≙ pyruvate) was studied. The labelling data were found to be consistent with (i) the oxidation of acetate to CO2 via the reactions of the citric acid cycle, (ii) the synthesis of citrate via a citrate (si)-synthase, and (iii) the anaplerotic synthesis of oxaloacetate from acetate and 2 CO2 via pyruvate as intermediate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...