GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Stable oxygen isotopes  (1)
  • reactive oxygen species  (1)
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6745-6754, doi:10.1029/2019GL082867.
    Description: Although photochemical oxidation is an environmental process that drives organic carbon (OC) cycling, its quantitative detection remains analytically challenging. Here, we use samples from the Deepwater Horizon oil spill to test the hypothesis that the stable oxygen isotope composition of oil (δ18OOil) is a sensitive marker for photochemical oxidation. In less than one‐week, δ18OOil increased from −0.6 to 7.2‰, a shift representing ~25% of the δ18OOC dynamic range observed in nature. By accounting for different oxygen sources (H2O or O2) and kinetic isotopic fractionation of photochemically incorporated O2, which was −9‰ for a wide range of OC sources, a mass balance was established for the surface oil's elemental oxygen content and δ18O. This δ18O‐based approach provides novel insights into the sources and pathways of hydrocarbon photo‐oxidation, thereby improving our understanding of the fate and transport of petroleum hydrocarbons in sunlit waters, and our capacity to respond effectively to future spills.
    Description: We thank Robert Ricker and Greg Baker (NOAA) for helping secure the oil residues, James Payne (Payne Environmental Consultants, Inc.) for collecting many of the surface oil residues, Joy Matthews (UC Davis) for exceptional assistance in preparing and analyzing the oil residues for oxygen content and isotopes, Hank Levi and Art Gatenby at CSC Scientific Company for assistance with the water content measurements, Robyn Comny (US EPA) for providing the Alaska North Slope oil, and Rose Cory (UMich) for discussions about our findings. Special thanks to John Hayes who provided constructive feedback on a preliminary version of this dataset prior to his passing in February of 2017. We thank Alex Sessions (CalTech) for his constructive feedback during the review process. This work was supported, in part, by National Science Foundation grants RAPID OCE‐1043976 (CMR), OCE‐1333148 (CMR), OCE‐1333026 (CMS), OCE‐1333162 (DLV), OCE‐1841092 (CPW), NASA NESSF NNX15AR62H (KMS), the Gulf of Mexico Research Initiative grants ‐ 015, SA 16‐30, and DEEP‐C consortium, a fellowship through the Hansewissenschaftskolleg (Institute for Advanced Studies) to SDW, and assistant scientist salary support from the Frank and Lisina Hoch Endowed Fund (CPW).
    Description: 2019-11-30
    Keywords: Petroleum hydrocarbons ; Photochemical oxidation ; Deepwater Horizon ; Stable oxygen isotopes ; Organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. M., Grabb, K. C., Karolewski, J. S., Plummer, S., Farfan, G. A., Wankel, S. D., Diaz, J. M., Lamborg, C. H., & Hansel, C. M. Spatial heterogeneity in particle-associated, light-independent superoxide production within productive coastal waters. Journal of Geophysical Research: Oceans, 125(10), (2020): e2020JC016747, https://doi.org/10.1029/2020JC016747.
    Description: In the marine environment, the reactive oxygen species (ROS) superoxide is produced through a diverse array of light‐dependent and light‐independent reactions, the latter of which is thought to be primarily controlled by microorganisms. Marine superoxide production influences organic matter remineralization, metal redox cycling, and dissolved oxygen concentrations, yet the relative contributions of different sources to total superoxide production remain poorly constrained. Here we investigate the production, steady‐state concentration, and particle‐associated nature of light‐independent superoxide in productive waters off the northeast coast of North America. We find exceptionally high levels of light‐independent superoxide in the marine water column, with concentrations ranging from 10 pM to in excess of 2,000 pM. The highest superoxide concentrations were particle associated in surface seawater and in aphotic seawater collected meters off the seafloor. Filtration of seawater overlying the continental shelf lowered the light‐independent, steady‐state superoxide concentration by an average of 84%. We identify eukaryotic phytoplankton as the dominant particle‐associated source of superoxide to these coastal waters. We contrast these measurements with those collected at an off‐shelf station, where superoxide concentrations did not exceed 100 pM, and particles account for an average of 40% of the steady‐state superoxide concentration. This study demonstrates the primary role of particles in the production of superoxide in seawater overlying the continental shelf and highlights the importance of light‐independent, dissolved‐phase reactions in marine ROS production.
    Description: This work was funded by grants from the Chemical Oceanography program of the National Science Foundation (OCE‐1355720 to C. M. H. and C. H. L.), NASA Earth and Space Science Fellowship (Grant NNX15AR62H to K. M. S.), Agouron Institute Postdoctoral Fellowship (K. M. S.), NSF GRFPs (2016230268 to K. C. G. and 2017250547 to S. P.), and a Sloan Research Fellowship (J. M. D.). The Guava flow cytometer was purchased through an NSF equipment improvement grant (1624593).
    Keywords: reactive oxygen species ; Extracellular superoxide ; Light‐independent ROS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...