GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Photosynthetic bacteria (Rhodobacter capsulatus) ; Phototrophic growth ; Nitrate reduction ; TMAO reduction ; Redox balance ; NMR assay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phototrophic growth of Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata) under anaerobic conditions with either butyrate or propionate as carbonsource was dependent on the presence of either CO2 or an auxiliary oxidant. NO - 3 , N2O, trimethylamine-N-oxide (TMAO) or dimethylsulphoxide (DMSO) were effective provided the appropriate anaerobic respiratory pathway was present. NO - 3 was reduced extensively to NO - 3 , TMAO to trimethylamine and DMSO to dimethylsulphide under these conditions. Analysis of culture fluids by nuclear magnetic resonance showed that two moles of TMAO or DMSO were reduced per mole of butyrate utilized and one mole of either oxidant was reduced per mole of propionate consumed. The growth rate of Rb. capsulatus on succinate or malate as carbon source was enhanced by TMAO in cultures at low light intensity but not at high light intensities. A new function for anaerobic respiration during photosynthesis is proposed: it permits reducing equivalents from reduced substrates to pass to auxiliary oxidants present in the medium. The use of CO2 or auxiliary oxidants under phototrophic conditions may be influence by the availability of energy from light. It is suggested that the nuclear magnetic resonance methodology developed could have further applications in studies of bacterial physiology.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...