GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep
  • Other types  (2)
  • Radiogenic isotopes  (1)
  • back-arc basalt  (1)
Document type
  • OceanRep
  • Other types  (2)
Source
Keywords
Language
Years
  • 1
    Publication Date: 2023-07-19
    Description: The late-tectonic 511.4 ± 0.6 Ma-old Nomatsaus intrusion (Donkerhoek batholith, Damara orogen, Namibia) consists of moderately peraluminous, magnesian, calc-alkalic to calcic granites similar to I-type granites worldwide. Major and trace-element variations and LREE and HREE concentrations in evolved rocks imply that the fractionated mineral assemblage includes biotite, Fe–Ti oxides, zircon, plagioclase and monazite. Increasing K2O abundance with increasing SiO2 suggests accumulation of K-feldspar; compatible with a small positive Eu anomaly in the most evolved rocks. In comparison with experimental data, the Nomatsaus granite was likely generated from meta-igneous sources of possibly dacitic composition that melted under water-undersaturated conditions (X H2O: 0.25–0.50) and at temperatures between 800 and 850 °C, compatible with the zircon and monazite saturation temperatures of 812 and 852 °C, respectively. The Nomatsaus granite has moderately radiogenic initial 87Sr/86Sr ratios (0.7067–0.7082), relatively radiogenic initial εNd values (− 2.9 to − 4.8) and moderately evolved Pb isotope ratios. Although initial Sr and Nd isotopic compositions of the granite do not vary with SiO2 or MgO contents, fSm/Nd and initial εNd values are negatively correlated indicating limited assimilation of crustal components during monazite-dominated fractional crystallization. The preferred petrogenetic model for the generation of the Nomatsaus granite involves a continent–continent collisional setting with stacking of crustal slices that in combination with high radioactive heat production rates heated the thickened crust, leading to the medium-P/high-T environment characteristic of the southern Central Zone of the Damara orogen. Such a setting promoted partial melting of metasedimentary sources during the initial stages of crustal heating, followed by the partial melting of meta-igneous rocks at mid-crustal levels at higher P–T conditions and relatively late in the orogenic evolution.
    Description: Deutsche Forschungsgemeinschaft
    Description: Universität Hamburg (1037)
    Keywords: ddc:552.3 ; Nomatsaus granite ; Donkerhoek batholith ; Damara Orogen ; Radiogenic isotopes ; U–Pb monazite geochronology
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-26
    Description: We present new geochemical and isotopic data for rock samples from two island arc volcanoes, Erromango and Vulcan Seamount, and from a 500 m thick stratigraphic profile of lava flows exposed on the SW flank of Vate Trough back-arc rift of the New Hebrides Island Arc (NHIA). The basalts from the SW rift flank of Vate Trough have ages of ~0.5 Ma but are geochemically similar to those erupting along the active back-arc rift. The weak subduction component in the back-arc basalts implies formation by decompression melting during early rifting and rifting initiation by tectonic processes rather than by lithosphere weakening by arc magma. Melting beneath Vate Trough is probably caused by chemically heterogeneous and hot mantle that flows in from the North Fiji Basin in the east. The melting zone beneath Vate Trough back-arc is separate from that of the arc front, but a weak slab component suggests fluid transport from the slab. Immobile incompatible element ratios in South NHIA lavas overlap with those of the Vate Trough depleted back-arc basalts, suggesting that enriched mantle components are depleted by back-arc melting during mantle flow. The slab component varies from hydrous melts of subducted sediments in the Central NHIA to fluids from altered basalts in the South NHIA. The volcanism of Erromango shows constant compositions for 5 million years, that is, there is no sign for variable depletion of the mantle or for a change of slab components due to collision of the D'Entrecasteaux Ridge as in lava successions further north.
    Keywords: 551.9 ; subduction zone ; back-arc basalt ; sediment subduction
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...