GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 61 (1996), S. 1525-1539 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of long branching on the deformational behavior has been examined for four commercial high cis-polybutadienes with particular interest as to its implication on their processability. The techniques used were oscillatory shear measurements at small deformation and tensile stress-strain measurements at large deformation. In the shear measurements (linear behavior), the temperature dependence of the shift factor in the time-temperature superposition is related to the degree of branching obtained from dilute solution viscosity. In the tensile measurements (nonlinear behavior), the rubbers showed either strain-hardening or strain-softening. The difference was not related to the degree of branching determined by dilute solution viscosities. This means that the dilute solution viscosity is not an adequate means to explain the processability difference of the rubbers. The branch length, although the absolute value is unknown, is characterized as short or long on the basis of the strain-softening or strain-hardening behavior. Both small shear and large elongational measurements are necessary for characterization of branching pattern and processability. Rubbers with relatively short branches (strain-softening type) or with the smallest amount of long-branching (non-strain-hardening type) were found to strain-crystallize most easily. The absence of strong resistance to stretching is the apparent reason for the ease of crystallization. © 1996 John Wiley & Sons, Inc.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 62 (1996), S. 2329-2339 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Some grades of cis-1,4-polybutadiene contain dispersed crystalline particles made up of a block copolymer having amorphous cis-1,4- and crystalline 1,2 blocks. The particles are known to enhance the strain-induced crystallization of cis-1,4 matrix rubber. The deformational behavior was examined by dynamic shear measurements at small deformation and tensile stress-strain measurements at large deformation. In the shear measurements (linear behavior), the temperature dependence of the shift factor in the time-temperature superposition has been evaluated. The higher temperature dependence was observed for the lower crystalline particle content and higher degree of branching of the matrix rubber. The presence of the crystalline particles resulted in the viscosity enhancement like that expected from the dispersed particles. In the tensile measurements (non-linear behavior), the rubbers showed strain softening. The higher degree of strain softening was observed for the higher amount of the crystalline particles and lower degree of branching. The strain softening is a result of the crystalline particles facilitating the elongation. Because these particles posses the branches which are cis-1,4 chains of the block copolymer, the branches are lubricating the system during the stretching. The length of the branches must be short enough so as to produce no significant entanglement constraint. This observation is in accord with the previous one that a relatively long branch gives strain hardening, whereas a relatively short branch gives strain softening. The strain softening was found to enhance the strain-induced crystallization. This conclusion is opposite to what one might expect from the entanglement constraints by the long branches, forcing the orientation of the chains, and thus enhancing the strain-induced crystallization. © 1996 John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...