GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • OceanRep
  • Plant wax lipids  (2)
  • Sediment transport  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 53 (2006): 1224-1243, doi:10.1016/j.dsr.2006.05.005.
    Description: Recent studies have revealed that lateral transport and focusing of particles strongly influences the depositional patterns of organic matter in marine sediments. Transport can occur in the water column prior to initial deposition or following sediment re-suspension. In both cases, fine-grained particles and organic-rich aggregates are more susceptible to lateral transport than coarse-grained particles (e.g. foraminiferal tests) because of the slower sinking velocities of the former. This may lead to spatial and, in the case of redistribution of resuspended sediments, temporal decoupling of organic matter from coarser sediment constituents. Prior studies from the Argentine Basin have yielded evidence that suspended particles are displaced significant distances (100 - 1000 km) northward and downslope by strong surface and/or bottom currents. These transport processes result in anomalously cold alkenone-derived sea surface temperature (SST) estimates (up to 6°C colder than measured SST) and in the presence of frustules of Antarctic diatom species in surface sediments fromthis area. Here we examine advective transport processes through combined measurements of compound-specific radiocarbon ages of marine phytoplankton derived biomarkers (alkenones) from core-tops and excess 230Th (230Thxs)-derived focusing factors for late Holocene sediments from the Argentine Basin. On the continental slope, we observe 230Thxs-based focusing factors of 1.4 to 3.2 at sites where alkenone-based SST estimates were 4–6°C colder than measured values. In contrast, alkenone radiocarbon data suggest coeval deposition of marine biomarkers and planktic foraminifera, as alkenones in core-tops were younger than, or similar in age to, foraminifera. We therefore infer that the transport processes leading to the lateral displacement of these sediment components are rapid, and hence probably occur in the upper water column (〈1500 m).
    Description: This work was funded by NSF grant #OCE-0327405 and a WHOI-NOSAMS postdoctoral scholarship to GM, and by support from NSF and the Gary Comer Science and Education Foundation to JFM.
    Keywords: Sediment transport ; Radiocarbon dating ; Sea-surface temperatures ; Core-top sediments ; South Atlantic Ocean ; Argentine and Brazil Basins ; Brazil-Malvinas Confluence
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 1583514 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 105 (2013): 14-30, doi:10.1016/j.gca.2012.11.034.
    Description: Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3 to -37.5 ‰) and ∆14C values (-204 to +2 ‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30 to -34 ‰) and a relatively narrow range of ∆14C values (-45 to -150 ‰; HPLC-based mesurement) that were similar to, or younger than, bulk OM (-195 to -137 ‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ~500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source apportionment, and for interpretation of sedimentary records of past vegetation dynamics. Key words: 14C and 13C composition, radiocarbon age, plant wax lipids, lignin phenols, Washington margin, marine carbon cycling, terrestrial organic matter
    Description: Grants OCE-9907129, OCE-0137005, and OCE-0526268 (to TIE) from the National Science Foundation (NSF) supported this research.
    Keywords: 14C and 13C composition ; Radiocarbon age ; Plant wax lipids ; Lignin phenols ; Washington margin ; Marine carbon cycling ; Terrestrial organic matter
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1855–1873, doi:10.1002/2015GB005204.
    Description: Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these “old” terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.
    Description: Chinese National Key Development Program for Basic Research Grant Numbers: 2014CB954003, 2015CB954201; Knut and Alice Wallenberg Foundation; Headquarters of the Russian Academy of Sciences; Swedish Research Council; US National Oceanic and Atmospheric Administration; Russian Foundation of Basic Research Grant Numbers: (13-05-12028, 13-05-12041; Swedish Polar Research Secretariat; Nordic Council of Ministers; Government of the Russian Federation Grant Number: 2013-220-04-157; Swiss National Science foundation. Grant Number: (200021_140850 US National Science Foundation (NSF) Grant Numbers: OCE-9907129, OCE-0137005, OCE-0526268; Stanley Watson Chair for Excellence in Oceanography Grant Number: 825.10.022; ETH Zürich; NWO Rubicon; Veni Grant Number: 863.12.004; UK NERC Grant Number: NE/I024798/1; NSF. Grant Numbers: 0436118, 0732555, 1107774
    Description: 2016-05-02
    Keywords: Compound-specific radiocarbon analysis ; Terrestrial carbon markers ; Pan-arctic rivers ; Diacids ; Lignin ; Plant wax lipids
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q09004, doi:10.1029/2007GC001603.
    Description: Organic matter accumulation and burial on the Namibian shelf and upper slope are spatially heterogeneous and strongly controlled by lateral transport in subsurface nepheloid layers. Much of the material deposited in depo-centers on the slope ultimately derives from the shelf. Supply of organic matter from the shelf involves selective transport of organic matter. We studied these selective transport processes by analyzing the radiocarbon content of co-occurring sediment fractions. Here we present radiocarbon data for total organic carbon as well as three tracers of surface ocean productivity (phytoplankton-derived alkenones, membrane lipids of pelagic crenarchaeota (crenarchaeol), and calcareous microfossils of planktic foraminifera) in core-top and near-surface sediment samples. The samples were collected on the Namibian margin along a shelf-slope transect (85 to 1040 m) at 24°S and from the upper slope depo-center at 25.5°S. In core-top sediments, alkenone ages gradually increased from modern to 3490 radiocarbon years with distance from shore and with water depth. Crenarchaeol, while younger than alkenones, also increased in age with distance offshore. It was concluded that the observed ages were a consequence of cross-shelf transport and associated aging of organic matter. Radiocarbon ages of preserved lipid biomarkers in sediments thus at least partially depend on the relative amount of laterally supplied, pre-aged material present in a sample, highlighting the importance of nepheloid transport for the sedimentation of organic matter over the Namibian margin.
    Description: This work was funded by NSF grant OCE- 0327405 to T.I.E. and by a Spinoza grant to J.S.S.D. from NWO.
    Keywords: Compound-specific radiocarbon dating ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...