GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phytoplankton  (1)
  • Synechococcus  (1)
  • 1
    ISSN: 1420-9055
    Keywords: Phytoplankton ; primary production ; photosynthesis ; optics ; adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This tutorial was designed for nonbiologists requiring an introduction to the nature and general timescales of phytoplankton responses to physical forcing in aquatic environments. As such, an effort was made to highlight biological markers which might assist in identifying, measuring and/or validating physical processes controlling the variability in the distribution, abundance, composition and activity of phytoplankton communities. Given the recent advances in environmental optics and remote sensing capabilities, a special emphasis was placed on the nature and utility of phytoplankton optical properties in current bio-optical modelling efforts to predict temporal and spatial variability in phytoplankton productivity and growth.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 248 (1992), S. 93-103 
    ISSN: 1573-5117
    Keywords: water bloom ; picoplankton ; Synechococcus ; phycoerthrin ; phycocyanin ; absorption spectra ; fluorescence spectra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Unicellular autofluorescent picoplankton ranging from 0.4 to 1.5 µm in diameter were found to be a significant component of phytoplankton in the North Basin of Lake Biwa during early summer in 1989 and 1990. The abundance of these picoplankton varied seasonally by about three orders of magnitude with one maximum of up to 106 cells ml−1. Bloom-forming picoplankton were isolated by dilution and further cultivated in liquid medium. Three clones were found to be representative species of the bloom. Using epifluorescence and electron microscopy as well as absorption and fluorescence emission spectroscopy, we examined these clones according to shape and pigment composition. They have ringlike thylakoids, are photosynthetically active and have no nuclear envelope. The cyanobacterial clones isolated represent three types containing phycobilisomes with either phycocyanin or phycoerthrin as the dominant accessory pigment. They are described here as three new species, two phycoerythrin-rich types and one phycocyanin-rich type, all of them belonging to the Synechococcus group. The differences found by fluorescence emission of isolated clones are discussed with respect to in situ strain identification.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...