GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Photosynthetic bacteria ; Electron transport ; Rhodopseudomonas capsulata ; Membrane potential ; Dimethylsulphoxide ; Trimethylamine-N-oxide ; Fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Under dark and essentially anaerobic conditions electron flow to either dimethylsulphoxide or trimethylamine-N-oxide in cells of Rhodopseudomonas capsulata has been shown to generate a membrane potential. This conclusion is based on the observation of a red shift in the carotenoid absorption band which is a well characterised indicator of membrane potential in this bacterium. The magnitude of the dimethylsulphoxide- or trimethylamine-N-oxide-dependent membrane potential was reduced either by a protonophore uncoupler of oxidative phosphorylation or synergistically by a combination of a protonophore plus rotenone, an inhibitor of electron flow from NADH dehydrogenase. These findings, together with the observation that venturicidin, an inhibitor of the proton translocating ATPase, did not reduce the membrane potential, show that electron flow to dimethylsulphoxide or trimethylamine-N-oxide is coupled to proton translocation. Thus contrary to some previous proposals dark and anaerobic growth of Rps. capsulata in the presence of dimethylsulphoxide or trimethylamine-N-oxide cannot be regarded as purely fermentative.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 344-349 
    ISSN: 1432-072X
    Keywords: Nitrate reductase ; Photosynthetic bacteria ; Anaerobic respiration ; Nitrate assimilation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. The properties of nitrate reductase activities have been compared in several strains of Rhodopseudomonas capsulata grown phototrophically in the presence of nitrate as sole nitrogen source. 2. Strains AD2 and BK5 resemble the spontaneous mutant N22DNAR+ (described by McEwan et al. 1982 FEBS Lett. 150, 277\2-280) in that reduction of nitrate was inhibited by either illumination or oxygen but not by NH 4 + , and that electron flow to nitrate under dark anaerobic conditions generated a cytoplasmic membrane potential (as judged by an electrochromic shift in the absorbance spectrum of endogenous carotenoid pigments). In contrast disappearance of nitrate from suspensions of strains N22 and St. Louis was dependent upon illumination and was inhibited by NH 4 + . Membrane potentials were not generated by addition of nitrate in the dark to N22, St. Louis or strain Kbl. 3. Nitrate reductase was shown to be located in the periplasmic space of both strain AD2 and mutant N22DNAR+. The nitrate reductase activity in cells of AD2 and N22DNAR+ was relatively insensitive to azide, with 0.5mM azide required for 50% inhibition. The nitrate reductase of strain BK5 was more strongly associated with the cytoplasmic membrane and no conclusion could be reached about whether it was located on the periplasmic or cytoplasmic surface. In BK5 cells nitrate reductase activity was sensitive to low concentrations of azide (50% inhibition with 2 \gmM azide). It is proposed that functionally the nitrate reductase activity in strains AD2, BK5 and N22DNAR+ has identical roles. These roles are suggested to include: (i) The first step in the assimilation of nitrate. (ii). Provision of an alternative electron acceptor to oxygen for generating a membrane potential. (iii). A mechanism for disposing of excess reducing equivalents in the maintenance of balanced growth. This type of nitrate reductase, especially in AD2 and N22DNAR+, appears to resemble that described in a denitrifying strain of Rps. sphaeroides, but to differ markedly from its membrane-bound counterpart in other bacteria including the denitrifying Paracoccus denitrificans and Escherichia coli. 4. In other strains of Rps. capsulata including St. Louis, N22 and Kbl, only an assimilatory nitrate reductase, whose activity in intact cells is relatively sensitive to azide, is present in anaerobic, phototrophic cultures grown with nitrate as nitrogen source. As this reductase cannot be detected after breakage of cells, no conclusion can be made as to its location in the cell.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...