GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5079
    Keywords: Photosystem II heterogeneity ; QB-nonreducing centers ; PS II activation pathway ; PS II antenna size ; thylakoid membrane ; green algae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a−b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a β-type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS IIβ units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS IIβ units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS IIα form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS IIβ unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS IIα) in the membrane of the grana partition region.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: Chlamydomonas reinhardtii ; mutagenesis ; photoinhibition ; Photosystem II ; repair cycle ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The work outlines the isolation of transformant Chlamydomonas reinhardtii cells that appear to be unable to repair Photosystem II from photoinhibitory damage. A physiological and biochemical characterization of three mutants is presented. The results show differential stability for the D1 reaction center protein in the three mutants compared to the wild type and suggest lesions that affect different aspects of the Photosystem II repair mechanism. In the ag16.2 mutant, significantly greater amounts of D1 accumulate in the thylakoid membrane than in the wild type under steady-state growth conditions, and D1 loss is significantly retarded in the presence of the protein biosynthesis inhibitor chloramphenicol. Moreover, aberrant electrophoretic mobility of D1 in the ag16.2 suggests that this protein is modified to an as yet unknown configuration. These results indicate that the biosynthesis and/or degradation of D1 is altered in this strain. A different type of mutation occurred in the kn66.7 and kn27.4 mutants of C. reinhardtii. The stability of D1 declined much faster as a function of light intensity in these mutants than in the wild type. Thereby, the threshold of photoinhibition in these mutants was significantly lower than that in the wild type. It appears that kn66.7 and kn27.4 are similar conditional mutants, with the only difference between them being the amplitude of the chloroplast response to the mutation and the differential sensitivity they display to the level of irradiance.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...