GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2003. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 114 (2003): 2685-2697, doi:10.1121/1.1614258.
    Description: Acoustic scattering techniques provide a unique and powerful tool to remotely investigate the physical properties of the ocean interior over large spatial and temporal scales. With high-frequency acoustic scattering it is possible to probe physical processes that occur at the microstructure scale, spanning submillimeter to centimeter scale processes. An acoustic scattering model for turbulent oceanic microstructure is presented in which the current theory, which only accounts for fluctuations in the sound speed, has been extended to include fluctuations in the density as well. The inclusion of density fluctuations results in an expression for the scattering cross section per unit volume, σv, that is explicitly dependent on the scattering angle. By relating the variability in the density and sound speed to random fluctuations in oceanic temperature and salinity, σv has been expressed in terms of the temperature and salinity wave number spectra, and the temperature-salinity co-spectrum. A Batchelor spectrum for temperature and salinity, which depends on parameters such as the dissipation rates of turbulent kinetic energy and temperature variance, has been used to evaluate σv. Two models for the temperature-salinity co-spectrum have also been used. The predictions indicate that fluctuations in the density could be as important in determining backscattering as fluctuations in the sound speed. Using data obtained in the ocean with a high resolution vertical microstructure profiler, it is predicted that scattering from oceanic microstructure can be as strong as scattering from zooplankton.
    Description: This work was supported in part by ONR, NSF, and the Woods Hole Oceanographic Institution.
    Keywords: Acoustic wave scattering ; Underwater acoustic propagation ; Oceanography ; Remote sensing ; Oceanographic techniques
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: At 1300 hours on 12 September 1981 the research vessel ENDEAVOR departed Woods Hole on a 22 day cruise to study the physical, chemical and biological structure of warm core ring 81-D. The cruise was the first of 5 ENDEAVOR cruises planned as part of the NSF/NASA-sponsored Warm Core Ring study.
    Description: Prepared for the National Science Foundation OCE under Grant OCE 80-16983.
    Keywords: Water masses ; Ocean circulation ; Marine biology ; Chemical oceanography ; Oceanography ; Endeavor (Ship: 1976-) Cruise EN74
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...