GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 277-284 
    ISSN: 1432-0789
    Keywords: Key words Organic matter ; 13C analyses ; Land use change ; Fractionation ; Pasture ; Maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Conversion of arable land (maize) to pasture will affect the soil organic matter (SOM) content. Changes in the SOM content were studied using a size- and density-fractionation method and 13C analysis. Twenty-six years of maize cropping had resulted in a depletion of carbon stored in the macro-organic fractions (〉150 μm) and an increase in the 〈20 μm fraction. Maize-derived carbon in the upper 20 cm increased from 10% in the finest fraction (〈20 μm) to 91% in the coarse (〉250 μm), light (b.d. 〈1.13 g cm–3) fractions. Pasture installation resulted in a rapid recovery of the total SOM content. Up to 90% of the pasture-derived carbon that was mineralized during maize cropping was replaced within 9 years. Especially the medium and coarse size (〉150 μm) and light (b.d. 〈1.13 g cm–3) fractions were almost completely regenerated by input of root-derived SOM. The amount of medium-weight and heavy macro-organic fractions (〉150 μm; b.d. 〉1.13 g cm–3) in the 0- to 20-cm layer was still 40–50% lower than in the continuous pasture plots. Average half-life times calculated from 13C analyses ranged from 7 years in the light fractions to 56 years in heavy fractions. Fractionation results and 13C data indicated that mechanical disturbance (plowing) during maize cropping had resulted in vertical displacement of dispersed soil carbon from the 0- to 20-cm layer down to 60–80 cm. Conversion of arable land to pasture, therefore, not only causes a regeneration of the soil carbon content, it also reduces the risk of contaminant transport by dispersed soil carbon.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...