GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Key words Antidepressant drug ; Dopamine receptor ; Nucleus accumbens ; In situ hybridisation ; Receptor autoradiography ; Microdialysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This study examined the effect of repeated treatment with the antidepressant drugs, fluoxetine, desipramine and tranylcypromine, on dopamine receptor expression (mRNA and binding site density) in sub-regions of the nucleus accumbens and striatum of the rat. The effect of these treatments on extracellular levels of dopamine in the nucleus accumbens was also measured. Experiments using in situ hybridisation showed that the antidepressants caused a region-specific increase in D2 mRNA, this effect being most prominent in the nucleus accumbens shell. In contrast, none of the treatments increased D1 mRNA in any of the regions examined. Measurement of D2-like binding by receptor autoradiography, using the ligand [3H]YM-09151-2, revealed that both fluoxetine and desipramine increased D2-like binding in the nucleus accumbens shell; fluoxetine had a similar effect in the nucleus accumbens core. Tranylcypromine, however, had no effect on D2-like binding in the nucleus accumbens but decreased binding in the striatum. In microdialysis experiments, our data showed that levels of extracellular dopamine in the nucleus accumbens were not altered in rats treated with either fluoxetine or desipramine, but increased by tranylcypromine. From our findings, we propose that the antidepressant drugs tested enhance dopamine function in the nucleus accumbens through either increased expression of postsynaptic D2 receptors (fluoxetine and desipramine) or increased dopamine release (tranylcypromine).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2072
    Keywords: Dopamine ; Electroconvulsive shock ; Antidepressants ; Nucleus accumbens ; In situ hybridisation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study examined the effects of acute and repeated administration of electroconvulsive shock (ECS) on levels of D1 and D2 receptor mRNAs in the nucleus accumbens and striatum (caudate-putamen) of the rat. Quantitative in situ hybridisation with35S-labelled oligonucleotide probes specific for D1 and D2 receptor mRNAs was utilised. Compared to controls, rats receiving a single ECS showed higher levels of both D1 and D2 receptor mRNAs in the nucleus accumbens 4 h, but not 24 h, after treatment. Similarly, rats receiving ECS repeatedly (five ECS in 10 days) also exhibited higher levels of D1 and D2 receptor mRNAs in the nucleus accumbens 4 h, but not 24 h, after the last treatment. The effects of single and repeated ECS treatment on dopamine receptor mRNA levels were localised to the caudal region of the nucleus accumbens. No statistically significant changes in mRNA levels were detected in the striatum of rats treated with either acute or repeated ECS. We discuss the possibility that increased expression of D1 and D2 receptors in the nucleus accumbens may be involved in the dopamine-enhancing properties of ECS detected in behavioural studies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 141 (1999), S. 182-188 
    ISSN: 1432-2072
    Keywords: Key words Tyrosine depletion ; Catecholamine ; Dopamine ; Noradrenaline ; Microdialysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We report the effects of a tyrosine (and phenylalanine)-free amino acid mixture on tyrosine levels, ex vivo catecholamine synthesis and in vivo catecholamine release in brain regions of the rat. Administration of a tyrosine-free amino acid load reduced tissue levels of tyrosine (−50% after 2 h) in all brain regions examined (frontal cortex, hippocampus, striatum). The tyrosine-free amino acid mixture also reduced DOPA accumulation: this effect was most marked in striatum (−44%) and nucleus accumbens (−34%), areas with a predominantly dopaminergic innervation. Smaller decreases (−20–24%) were detected in other areas (cortex, hippocampus and hypothalamus). The effect on DOPA accumulation was prevented by supplementing the mixture with tyrosine/phenylalanine. The tyrosine-free amino acid mixture did not alter 5-HTP accumulation in any region. In microdialysis experiments, the tyrosine-free amino acid mixture did not consistently alter striatal extracellular dopamine under basal conditions but markedly, and dose-dependently, reduced the release of dopamine induced by amphetamine. In contrast, the tyrosine-free amino acid mixture did not alter either basal or amphetamine-evoked release of noradrenaline in hippocampus. Overall, these studies indicate that administration of a tyrosine-free amino acid mixture to rats depletes brain tyrosine to cause a decrease in regional brain catecholamine synthesis and release. Dopaminergic neurones appear to be more vulnerable to tyrosine depletion than noradrenergic neurones.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 334 (1986), S. 117-124 
    ISSN: 1432-1912
    Keywords: Dopamine receptors ; Dopamine release ; Dopamine metabolism ; Intracerebral dialysis ; Microdialysis ; Dopamine agonists and antagonists
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effect of the dopamine (DA) D-1 agonist SKF 38393, the D-2 agonist LY 171555 and the mixed D-1/D-2 agonist apomorphine on striatal DA release and metabolism was tested in vivo using an intracerebral dialysis method in halothane-anaesthetized rats. The specificity of responses to these agonists was tested using the selective DA antagonists SCH 23390 (D-1) and sulpiride (D-2). Both LY 171555, 0.01 mg/kg, and SKF 38393, 10 mg/kg, reduced levels of DA in striatal perfusates. Neither SCH 23390, 0.5 and 5 mg/kg, nor sulpiride, 10 mg/kg, affected levels of DA in striatal perfusates, but 250 mg/kg sulpiride caused a DA increase. The decrease of DA levels induced by LY 171555 (0.01 mg/kg) was prevented by pretreatment with sulpiride (10 mg/kg) but not SCH 23390 (0.5 mg/kg). In comparison, pretreatment with SCH 23390 (0.5 mg/kg) completely inhibited the reduction of DA induced by SKF 38393 (10 mg/kg) while sulpiride (10 mg/kg) was without effect. Apomorphine (0.05 mg/kg) also decreased DA in striatal perfusates and this action was partially inhibited by both SCH 23390 (0.5 mg/kg) and sulpiride (10 mg/kg). Levels of the DA metabolite DOPAC in striatal perfusates also significantly decreased following LY 171555 (0.01 mg/kg) and apomorphine (0.05 mg/kg) but not SKF 38393 (10 mg/kg). The antagonist SCH 23390, in a dose, 0.5 mg/kg, that alone did not increase levels of DOPAC, inhibited the reduction of DOPAC induced by both LY 171555 and apomorphine. Sulpiride, 10 mg/kg, caused a marked increase in striatal DOPAC and this was not affected by a subsequent injection of LY 171555, SKF 38393 or apomorphine. We conclude from these data that DA release in rat striatum is autoregulated by independent D-1 and D-2 receptor-linked mechanisms. In contrast, the level of DA metabolism is controlled by a D-2 receptor-coupled mechanism which can be influenced by the D-1 receptor. This study provides further evidence that DA release and DA synthesis/metabolism are able to change independent of each other.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 348 (1993), S. 339-346 
    ISSN: 1432-1912
    Keywords: 5-HT1A receptor ; Microdialysis ; 8-OHDPAT ; Buspirone ; Ipsapirone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Electrophysiological measurements of 5-HT neuronal activity report that repeated administration of 5-HT1A receptor agonists leads to desensitization of the 5-HT1A autoreceptor but this has not yet been detected in measurements of brain 5-HT synthesis or metabolism. Here we have determined the effect of repeated administration of 5-HT1A receptor agonists on brain 5-HT release using microdialysis. 2. Acute administration of the 5-HT1A receptor agonists buspirone (0.1–5 mg/kg s.c.) and ipsapirone (0.03–3 mg/kg s.c.) caused a dose-dependent decrease in 5-HT output in ventral hippocampus of the chloral hydrate anaesthetized rat. 3. The 5-HT response to buspirone (0.1 and 0.5 mg/kg s.c.) and ipsapirone (0.3 mg/kg s.c.) was significantly inhibited by pre-treatment with the 5-HT1/β-adrenoceptor antagonist pindolol (8–16 mg/kg s.c.). The 5-HT response to buspirone (0.1 mg/kg s.c.) and ipsapirone (0.3 mg/kg s.c.) was not blocked by pretreatment with a combination of the β1 and β2-adrenoceptor antagonists metoprolol and ICI 118,551 (4 mg/kg s.c.). 4. The effect of an acute challenge of buspirone (0.5 mg/kg s.c.) on 5-HT output in ventral hippocampus was not attenuated in rats treated twice daily for 14 days with 0.5 or 5 mg/kg s.c. buspirone compared to saline-injected controls. Similarly, the decrease in 5-HT induced by an acute challenge of ipsapirone (0.5 mg/kg s.c.) was not attenuated in rats treated twice daily for 14 days with 5 mg/kg s.c. ipsapirone. 5. In further experiments it was shown that the decrease in 5-HT induced in both ventral hippocampus and striatum by an acute challenge of the selective 5-HT1A receptor agonist 8-OH-DPAT (0.025 mg/kg s.c.), was not attenuated in rats treated twice daily for 14 days with 1 mg/kg s.c. 8-OH-DPAT. 6. Basal levels of 5-HT in hippocampal and striatal microdialysates of animals treated repeatedly with the 5-HT1A receptor agonists were not consistently altered relative to treatment controls. 7. In agreement with earlier studies measuring regional brain 5-HT synthesis and metabolism, the present microdialysis measurements of 5-HT release indicate that the inhibitory effect of 5-HT1A receptor agonists on presynaptic 5-HT function is maintained in rats treated repeatedly with the same drugs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...