GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Cambridge, Massachusetts : The MIT Press
    Keywords: Climatic changes ; Greenhouse effect, Atmospheric ; Global warming ; Climatic changes ; Global warming ; Greenhouse effect, Atmospheric ; Klimaänderung
    Type of Medium: Book
    Pages: x, 69 Seiten
    Edition: Updated edition
    ISBN: 9780262535915
    DDC: 363.738/74
    RVK:
    RVK:
    Language: English
    Note: Literaturverzeichnis: Seite [67]-69
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1233-1243, doi:10.1175/JCLI-D-16-0496.1.
    Description: A downscaling approach is applied to future projection simulations from four CMIP5 global climate models to investigate the response of the tropical cyclone (TC) climatology over the North Pacific basin to global warming. Under the influence of the anthropogenic rise in greenhouse gases, TC-track density, power dissipation, and TC genesis exhibit robust increasing trends over the North Pacific, especially over the central subtropical Pacific region. The increase in North Pacific TCs is primarily manifested as increases in the intense and relatively weak TCs. Examination of storm duration also reveals that TCs over the North Pacific have longer lifetimes under global warming. Through a genesis potential index, the mechanistic contributions of various physical climate factors to the simulated change in TC genesis are explored. More frequent TC genesis under global warming is mostly attributable to the smaller vertical wind shear and greater potential intensity (primarily due to higher sea surface temperature). In contrast, the effect of the saturation deficit of the free troposphere tends to suppress TC genesis, and the change in large-scale vorticity plays a negligible role.
    Description: The authors acknowledge support from the Strategic Environmental Research and Development Program (SERDP) (RC-2336). SERDP is the environmental science and technology program of the U.S. Department of Defense (DoD) in partnership with the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA).
    Description: 2017-08-01
    Keywords: Tropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 11861-11866, doi: 10.1073/pnas.1703568114 .
    Description: The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse.
    Description: The authors acknowledge funding for this study from NOAA Grants #424-18 45GZ and #NA11OAR4310101, National Science Foundation (NSF) Grants OCE 1458904, EAR 1520683, and EAR Postdoctoral Fellowship 1625150, the Community Foundation of New Jersey, and David and Arleen McGlade.
    Keywords: Tropical cyclones ; Flood height ; Storm surge ; New York City ; Sea-level rise ; Hurricane ; Coastal flooding ; Storm tracks
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09V10, doi:10.1029/2008GC002043.
    Description: Patterns of overwash deposition observed within back-barrier sediment archives can indicate past changes in tropical cyclone activity; however, it is necessary to evaluate the significance of observed trends in the context of the full range of variability under modern climate conditions. Here we present a method for assessing the statistical significance of patterns observed within a sedimentary hurricane-overwash reconstruction. To alleviate restrictions associated with the limited number of historical hurricanes affecting a specific site, we apply a recently published technique for generating a large number of synthetic storms using a coupled ocean-atmosphere hurricane model set to simulate modern climatology. Thousands of overwash records are generated for a site using a random draw of these synthetic hurricanes, a prescribed threshold for overwash, and a specified temporal resolution based on sedimentation rates observed at a particular site. As a test case we apply this Monte Carlo technique to a hurricane-induced overwash reconstruction developed from Laguna Playa Grande (LPG), a coastal lagoon located on the island of Vieques, Puerto Rico in the northeastern Caribbean. Apparent overwash rates in the LPG overwash record are observed to be four times lower between 2500 and 1000 years B.P. when compared to apparent overwash rates during the last 300 years. However, probability distributions based on Monte Carlo simulations indicate that as much as 65% of this drop can be explained by a reduction in the temporal resolution for older sediments due to a decrease in sedimentation rates. Periods of no apparent overwash activity at LPG between 2500 and 3600 years B.P. and 500–1000 years B.P. are exceptionally long and are unlikely to occur (above 99% confidence) under the current climate conditions. In addition, breaks in activity are difficult to produce even when the hurricane model is forced to a constant El Niño state. Results from this study continue to support the interpretation that the western North Atlantic has exhibited significant changes in hurricane climatology over the last 5500 years.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, Risk Prediction Initiative, National Geographic Society, Coastal Ocean Institute at WHOI, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research.
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Climate change ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 12610-12615, doi:10.1073/pnas.1513127112.
    Description: In a changing climate, future inundation of the United States’ Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea-levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (AD 1851-present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sealevel records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from AD 850 to AD 2005. We compare preanthropogenic era (AD 850 – AD 1800) and anthropogenic era (AD 1970 – AD 2005) storm-surge model results for New York City, exposing links between increased rates of sea-level rise and storm flood heights. We find that mean flood heights increased by ~1.24 m (due mainly to sea level rise) from ~AD 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500 year return period for a ~2.25 m flood height during the preanthropogenic era has decreased to ~24.4 years in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.
    Description: The authors acknowledge funding for this study from NOAA Grants # 424-18 45GZ and # NA11OAR4310101 and National Science Foundation award OCE 1458904.
    Description: 2016-03-28
    Keywords: Tropical cyclones ; Flood height ; Storm surge ; New York City ; Relative sea level ; Hurricane ; New Jersey
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...