GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8289–8318, doi:10.1175/JCLI-D-14-00555.1.
    Description: This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.
    Description: This research was funded by multiple grants from NASA’s Energy and Water Cycle Study (NEWS) program.
    Description: 2016-05-01
    Keywords: Physical Meteorology and Climatology ; Water budget ; Observational techniques and algorithms ; Remote sensing ; Mathematical and statistical techniques ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-10
    Description: Purpose As stated in the United Nations Global Assessment Report 2022 Concept Note, decision-makers everywhere need data and statistics that are accurate, timely, sufficiently disaggregated, relevant, accessible and easy to use. The purpose of this paper is to demonstrate scalable and replicable methods to advance and integrate the use of earth observation (EO), specifically ongoing efforts within the Group on Earth Observations (GEO) Work Programme and the Committee on Earth Observation Satellites (CEOS) Work Plan, to support risk-informed decision-making, based on documented national and subnational needs and requirements. Design/methodology/approach Promotion of open data sharing and geospatial technology solutions at national and subnational scales encourages the accelerated implementation of successful EO applications. These solutions may also be linked to specific Sendai Framework for Disaster Risk Reduction (DRR) 2015–2030 Global Targets that provide trusted answers to risk-oriented decision frameworks, as well as critical synergies between the Sendai Framework and the 2030 Agenda for Sustainable Development. This paper provides examples of these efforts in the form of platforms and knowledge hubs that leverage latest developments in analysis ready data and support evidence-based DRR measures. Findings The climate crisis is forcing countries to face unprecedented frequency and severity of disasters. At the same time, there are growing demands to respond to policy at the national and international level. EOs offer insights and intelligence for evidence-based policy development and decision-making to support key aspects of the Sendai Framework. The GEO DRR Working Group and CEOS Working Group Disasters are ideally placed to help national government agencies, particularly national Sendai focal points to learn more about EOs and understand their role in supporting DRR. Originality/value The unique perspective of EOs provide unrealized value to decision-makers addressing DRR. This paper highlights tangible methods and practices that leverage free and open source EO insights that can benefit all DRR practitioners.
    Description: Published
    Description: 163-185
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Keywords: Earth observations ; Geospatial ; Open science ; Disaster risk reduction, ; Sendai framework
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...